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Bispecific T cell engagers: an emerging 
therapy for management of hematologic 
malignancies
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Abstract 

Harnessing the power of immune cells, especially T cells, to enhance anti-tumor activities has become a promising 
strategy in clinical management of hematologic malignancies. The emerging bispecific antibodies (BsAbs), which 
recruit T cells to tumor cells, exemplified by bispecific T cell engagers (BiTEs), have facilitated the development of 
tumor immunotherapy. Here we discussed the advances and challenges in BiTE therapy developed for the treat-
ment of hematologic malignancies. Blinatumomab, the first BiTE approved for the treatment of acute lymphocytic 
leukemia (ALL), is appreciated for its high efficacy and safety. Recent studies have focused on improving the efficacy 
of BiTEs by optimizing treatment regimens and refining the molecular structures of BiTEs. A considerable number of 
bispecific T cell-recruiting antibodies which are potentially effective in hematologic malignancies have been derived 
from BiTEs. The elucidation of mechanisms of BiTE action and neonatal techniques used for the construction of BsAbs 
can improve the treatment of hematological malignancies. This review summarized the features of bispecific T cell-
recruiting antibodies for the treatment of hematologic malignancies with special focus on preclinical experiments 
and clinical studies.
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Background
Over the past few decades, bispecific antibodies (BsAbs) 
have been developed rapidly for the treatment of hema-
tologic malignancies. There are more than 100 formats 
for BsAbs, of which bispecific T cell engagers (BiTEs) 
are well-designed formats, and novel structures of BsAbs 
are emerging constantly [1]. The concept of BsAbs first 
appeared in the early 1960s, with the first example con-
structed in 1985 [2]. BiTE is the BsAb designed to tar-
get CD3 and tumor-specific antigens simultaneously 

and promote the cytotoxicity of T cells. Since Blinatu-
momab, a canonical CD3/CD19 BiTE, was approved by 
the United States Food and Drug Administration (FDA) 
in December 2014 for adult Philadelphia chromosome 
negative (Ph-) relapsed or refractory (R/R) B cell pro-
genitor acute lymphoblastic leukemia (B-ALL), BiTEs for 
the management of hematologic malignancies have been 
developed rapidly [3]. This review summarized the cur-
rent research status of BiTEs for the treatment of hema-
tologic malignancies. Many bispecific T cell-recruiting 
antibodies with novel structures have been derived from 
BiTEs. Some bispecific T cell-recruiting antibodies have 
been approved for the treatment of hematologic malig-
nancies and multiple promising drugs are currently 
in clinical trials. In order to maximize the therapeutic 
effects of bispecific T cell-recruiting antibodies, research 
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issues including the response rates, the recommended 
doses and adverse events need to be discussed.

Structures of BsAbs
BsAbs are divided into three categories according to their 
targets: (i) antibodies targeting two different tumor anti-
gens; (ii) antibodies targeting one tumor antigen and one 
immune-related molecule; (iii) antibodies targeting two 
immune-related molecules. BiTEs belong to the second 
category because one BiTE molecule usually targets one 
CD3 molecule and one tumor antigen simultaneously.

BsAbs are developed on the basis of monoclonal anti-
bodies. In the early days of BsAb development, BsAbs 
were produced by the reduction and reoxidation of 
hinged cysteine in monoclonal antibodies [4]. At the pre-
sent time, according to the structures of BsAbs, BsAbs 
are divided into two categories: the immunoglobulin G 
(IgG)-based antibodies and the variable fragment (Fv)-
based antibodies [5].

BsAbs based on the IgG structure display a similar 
structure to native antibodies. The major method of pro-
ducing IgG-based BsAbs is recombing half-molecules 
from heterogenous parental antibodies. New techniques 
of recombining functional half-molecules to produce 
IgG-based BsAbs include, but are not limited to orthog-
onal Fab interface, DuoBody, XmAb, CrossMab, and 
knobs-into-holes (KiH) [6–10]. Concerning the selec-
tion of IgG subclass, IgG2 and IgG4 are suitable options 
because IgG1-based antibodies can cause the elimination 
of activated T cells [11]. Duobody developed by Genmab 
is the platform which enables production of BsAbs by 
exchanging half-molecules from different parental IgGs. 
The mutation in the constant region of the heavy chain 
(CH) can recognize the heterologous half-molecule and 
promote the procedure of heterodimerization. KiH tech-
nology developed by Roche also enables production of 
antibodies through exchanging half-molecules. Knobs 
and holes mean mutations on CH3 domains which can 
promote heterodimerization between half-molecules. 
Based on KiH technology, Roche developed the Cross-
Mab platform by exchanging the CH1 and the constant 
region of the light chain (CL) of one parental antibody. 
This technique can solve the problem of light chain mis-
matching. XmAb technology developed by Xencor also 
enables production of BsAbs nearly identical to natu-
ral antibodies. Compared with Fv-based BsAbs, IgG-
based antibodies have longer half-lives in  vivo because 
they are larger in size and are hard to be cleared by the 
kidney. The solubility and stability of BsAbs are also 
improved for the presence of the fragment crystalliz-
able (Fc) domains [12]. Fc domains of BsAbs can recruit 
natural killer (NK) cells and macrophages to induce 
antibody-dependent cell-mediated cytotoxicity (ADCC) 

and complement-dependent cytotoxicity (CDC) [13]. 
However, the disadvantages of IgG-based BsAbs are also 
notable. The permeability of IgG-based BsAbs to tumor 
tissues is lower than Fv-based BsAbs because of the 
increased molecular weight. And the production of IgG-
based antibodies requires more complex techniques.

The Fv-based BsAbs usually consist of single-chain 
variable fragments (scFvs) simply. Due to their short 
half-lives, continuous infusion is required, which has 
restricted their promotion [12]. The BiTE technique is 
the prime platform to produce Fv-based BsAbs. Except 
for BiTE, single-chain diabody, dual-affinity retargeting 
antibody (DART), and tandem diabody (TandAb) are also 
platforms used for producing Fv-based BsAbs [14–16]. 
The BiTE molecule developed by Micromet is the anti-
body consisting of two scFvs connected by a short pep-
tide linker. The scFv is an antibody fragment produced 
by fusing one variable region of the heavy chain (VH) and 
one variable region of the light chain (VL) artificially. The 
DART molecule developed by MacroGenics is the anti-
body consisting of two engineered heterogenous scFvs 
which have exchanged their VH regions. The TandAb 
molecule developed by Affimed is the antibody consist-
ing of two single-chain diabodies which contain four 
variable domains, respectively. One TandAb molecule is 
constructed of two binding sites for CD3 and two binding 
sites for tumor antigens [17]. The BsAbs mentioned in 
this passage and their structures are illustrated in Table 1 
and Fig. 1.

Mechanisms of BiTE action
Different from natural antibodies, BiTEs can redirect 
T cells to specific tumor antigens and activate T cells 
directly. Natural antibodies are unable to recruit T cells 
directly because T cells lack Fcγ receptors [18]. The 
BiTE molecule usually targets one tumor antigen and 
one CD3 molecule simultaneously. The CD3 molecule 
non-covalently associates with the T cell receptor (TCR) 
and participates in antigen-specific signals transduction 
which can induce the activation of T cells. Activated T 
cells express high levels of CD69 and CD25 which pro-
mote the proliferation of T cells [19]. BiTE therapy can 
be a strategy to activate exhausted T cells induced by 
long-term exposure to tumor antigens. Some features of 
T cell activation induced by BiTEs have been observed. 
Firstly, the tumor cell plays an indispensable role in the 
T cell activation induced by the BiTE. Secondly, T cells 
can be activated without costimulatory signals such as 
CD28 and interleukin (IL)-2 [20]. This feature is attrib-
uted to memory T cells which play an important role in 
the reaction to BiTEs [21]. Another explanation is that 
immunological synapses between T cells and tumor cells 
can assemble TCRs and amplify first signals [20].
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Immunological synapses between T cells and tumor 
cells are also essential to the BiTE-mediated tumor lysis 
[22–25]. Activated T cells secrete perforin and other 
granzymes through immunological synapses. These cyto-
lytic proteins can form pores on cancer cell membrane. 
During the process of membrane self-repair, perforin, 
and other granzymes are endocytosed by cancer cells and 
then form endosomes. Perforin inside endosomes can 
form pores on the endosomal membrane and cause the 
release of granzymes inside targeted cells, then cancer 
cells are lysed (Fig. 2) [26, 27].

Mechanisms of tumor escape
Although BiTEs have been proved to be efficient in 
many relapsed or refractory hematological malignan-
cies, a subset of hematological malignancy patients still 
have no response to BiTEs. In order to improve the effi-
cacy of BiTEs, further studies on tumor escape should be 
implemented. The suppression of immune system, espe-
cially suppression of T cells, is an important reason for 
tumor escape [28]. The relationship between BiTE resist-
ance and programmed cell death protein 1/ programmed 
death-ligand 1 (PD-1/PD-L1) axis has been demon-
strated [29]. The expression level of PD-L1 increased in 
blinatumomab-resistant patients, which indicated the 
potential efficacy of BiTE therapy in combination with 

Table 1  Bispecific T cell-recruiting antibodies for the treatment 
of hematologic malignancies

Disease Target Name Antibody format

AML CD123-CD3 MGD006 DART​

XmAb14045 XmAb

CD33-CD3 AMG 330 BiTE

AMV 564 TandAb

FLT3-CD3 7370 BiTE

CLEC12A-CD3 MCLA-117 Biclonics

WT1-CD3 ESK1-BiTE BiTE

ALL CD19-CD3 Blinatumomab BiTE

AFM11 TandAb

MM BCMA-CD3 AMG420 BiTE

AMG701 BiTE-Fc

GPRC5D-CD3 Talquetamab DuoBody

CD38-CD3 AMG424 XmAb

Bi38-3 BiTE

FCRL5-CD3 anti-FcRH5/CD3 TDB Knobs-into-holes

NHL CD19-CD3 Blinatumomab BiTE

CD20-CD3 REGN1979 Veloci-Bi platform

Mosunetuzumab Knobs-into-holes

RG6026 2:1 CrossMab

MDS CD33-CD3 AMV564 TandAb

CD123-CD3 MGD006 DART​

Fig. 1  Structures of bispecific T cell-recruiting antibodies. A bispecific T cell engager (BiTE) consists of two single-chain variable fragments (scFvs); 
a dual-affinity retargeting antibody (DART) consists of two engineered scFvs whose VH exchanged with the other one; a TandAb consists of two 
single-chain diabodies with four variable domains; a XmAb consists of one scFv, one Fab fragment and one hetero-Fc domain; a 2:1 Crossmab 
contains two tumor antigen binders and one CD3 binder; “knob in hole” technique and duobody technique enable production of bispecific 
antibodies with similar structures to natural IgG
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PD-1/PD-L1 inhibitors [30]. AMG 330, a CD33/CD3 
BiTE, caused elevated PD-L1 expression on AML cells. 
And PD-1/PD-L1 blockade therapy enhanced the anti-
tumor efficacy of AMG 330 [31]. A large amount of clini-
cal trials focusing on combination therapy with bispecific 
T cell-recruiting antibodies and PD-1/PD-L1 inhibitors 
are ongoing. An antibody which targets PD-1, CD3 and 
CD33 simultaneously has been developed and proved to 
be efficient in treating acute myeloid leukemia (AML) in 
preclinical experiments [32].

Loss of target antigen expression is another expla-
nation for tumor escape. It was reported that 8% R/R 
acute lymphoblastic leukemia (ALL) cases after blinatu-
momab therapy were CD19 negative [33, 34]. It means 
other therapies targeting CD19 are potentially effective 
in most patients after blinatumomab therapy. However, 
understanding the mechanism of CD19 downregulation 
can improve the prognosis of CD19-relapsed patients. 
Antigenic shift is not the only reason for the downregu-
lation of target antigens. It can also be attributed to the 
disrupted trafficking of the target antigens [35].

Acute lymphoblastic leukemia
ALL is characterized by the proliferation of a huge num-
ber of immature lymphocytes in different tissues. R/R 
ALL patients used to have poor clinical outcomes even 
after heavy salvage chemotherapy and hematopoietic 
stem cell transplantation (HSCT) [36, 37]. However, in 
recent years, new targeted drugs have been developed 
as remedies for ALL. These drugs include BsAbs, CAR-T 

cells, anti-CD20 monoclonal antibodies, and tyrosine 
kinase inhibitors [38–40]. BsAbs targeting CD19 and 
CD3 for the treatment of ALL have become a subject 
undergoing intense study recently because CD19 is over-
expressed in ALL cells (Fig. 3) [5].

Blinatumomab
Blinatumomab (MT103) is a BiTE that consists of two 
scFvs which can combine with CD19 and CD3 separately. 
The anti-CD19 domain and anti-CD3 domain of blinatu-
momab are connected with a short glycine–serine linker. 
The flexible structure of blinatumomab enables blinatu-
momab to bind T cells and tumor cells efficiently [41]. 
Blinatumomab has been proved to be an efficient drug in 
ALL and non-Hodgkin lymphoma (NHL) patients. Bli-
natumomab could activate cytotoxic T cells and induce 
regression of NHL cells at the concentration as low as 
0.06  mg/m2/day [42, 43]. The FDA has approved blina-
tumomab for the treatment of R/R Philadelphia chromo-
some-negative (Ph-) B-ALL in 2014 and R/R Philadelphia 
chromosome-positive (Ph +) B-ALL in 2017. Blinatu-
momab is also conducive to deleting minimal residual 
disease (MRD) in AML [44]. MRD is the status of per-
sistent detectable leukemia cells after complete remission 
assessed by traditional pathological examinations. MRD 
is predictive of poor patient prognosis and the deletion 
of MRD is beneficial to patients [45]. Blinatumomab was 
approved for the treatment of MRD in B-ALL patients in 
2018 and it is the first FDA-approved treatment for MRD.

Fig. 2  Mechanisms of tumor cell lysis mediated by the BiTEs. BiTEs can redirect T cells to tumor cells and active T cells. Activated T cells release 
perforin and other granzymes through immunological synapses. These cytolytic proteins can form endosomes in tumor cells and lyse tumor cells 
ultimately
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Efficacy of blinatumomab
Blinatumomab is an effective therapy for R/R Ph- B-ALL. 
In a phase II study which included primary R/R Ph- ALL 
patients, 43% of the patients achieved complete remission 
(CR) (33%) or complete remission with partial hemato-
logic recovery in peripheral blood (CRh) (10%) after two 
cycles of blinatumomab treatment [46]. More detailed 
information about clinical trials of blinatumomab and 
some drugs mentioned in this passage are listed in 
Table 2. In patients who relapsed after allogeneic hemat-
opoietic stem cell transplantation (allo-HSCT), the CR/
CRh rate after two cycles of blinatumomab treatment was 
45%. These data have corroborated that blinatumomab is 
significantly effective in aggressive ALL (NCT01466179) 
[47]. In a phase II study which included 108 Ph- B-ALL 
patients in CR with MRD, 85 patients reached MRD neg-
ativity after one cycle of blinatumomab treatment at the 
dose of 15  µg/m2/day. And blinatumomab administered 
in first CR is associated with the long-term survival of 
patients. Thus, early administration of blinatumomab is 

beneficial to B-ALL patients with MRD (NCT01207388) 
[48]. Compared with standard chemotherapy, blina-
tumomab was associated with a higher rate of CR and 
longer overall survival [49]. Moreover, administration of 
blinatumomab before allogeneic stem cell transplantation 
improved the rate of CR, which indicated that blinatu-
momab could be a bridge to allogeneic stem cell trans-
plantation (NCT02013167) [50].

Blinatumomab is also a treatment option for Ph + ALL 
patients. The prognosis of Ph + ALL patients has been 
greatly improved since the appearance of tyrosine kinase 
inhibitors (TKIs) exemplified by imatinib. However, 
R/R Ph + ALL patients who are resistant to imatinib 
therapy still lack access to effective therapies. And bli-
natumomab is a feasible solution to this problem [51]. 
Blinatumomab has more advantages than chemotherapy, 
including the increased rate of CR/CRh and longer over-
all survival (OS) [52]. In a phase II study which included 
Ph + ALL patients intolerant or refractory to imatinib, 
36% of study subjects reached CR/CRh after two cycles 

Fig. 3  Targets of bispecific B cell-recruiting antibodies. CD19 and CD20 are targets for treatment of NHL; CD19 is the target for treatment of acute 
lymphocytic leukemia; CD123, CD33, CLEC12A, WT1, and FLT3 are targets for treatment of acute myeloid leukemia; BCMA, CD38, and GPRC5D are 
targets for treatment of multiple myeloma
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of blinatumomab monotherapy (NCT02000427) [53]. 
Another phase II trial aimed to evaluate the efficacy of 
dasatinib–blinatumomab therapy in newly diagnosed 
Ph + ALL patients. 98% of the patients included in this 
trial achieved CR after the dasatinib induction treatment 
and the following blinatumomab cycles at the dose of 
28 μg/day. Fifteen patients were MRD-positive after the 
dasatinib induction treatment. ABL1 mutations were 
detected in 7 of 15 MRD-positive patients. However, bli-
natumomab eliminated all the mutations related to MRD 
in this trial, which proved that blinatumomab had an 
advantage in deleting MRD cells with ABL1 mutations 
[44].

Meanwhile, the efficacy of blinatumomab against NHL 
has been evaluated by a series of clinical trials. In 2011, 
Blinatumomab was proved to be efficient in R/R dif-
fuse large B cell lymphoma (DLBCL) patients and the 
objective response rate (ORR) reached 56%. In a phase I 
clinical trial which included R/R NHL patients, the maxi-
mum tolerated dose (MTD) of blinatumomab was deter-
mined to be 60  μg/m2 per day. Among patients treated 
at the MTD, the ORR reached 69% (FL, 80%; MCL, 71%; 
DLBCL, 55%) and the CR/CRu rate reached 37% [54]. 
In another phase II study which included R/R DLBCL 
patients (n = 25), the ORR and CR rate were 43% (9/21) 
and 19% (4/21) respectively at the dose of 112 μg per day 
[55].

Administration of blinatumomab
The optimal dosing regimen of blinatumomab to maxi-
mize therapeutic effects has been determined. The 
molecular weight of blinatumomab is low (~ 55  kDa) 
because the BiTE molecule only consists of two scFvs. 
And the estimated mean (standard deviation) of elimina-
tion half-life of blinatumomab is 2.11 (1.42) h. Because 
of its short half-life, blinatumomab is usually adminis-
tered by continuous intravenous infusion to maintain its 
therapeutic concentration [56]. The recommended dose 
of blinatumomab was determined in a phase II study 
(NCT01209286) and the regimen is described below. 
Each cycle lasts 6 weeks. During the first cycle, blinatu-
momab should be administered at the dose of 9  μg/day 
in the first week. Then the dose rises to 28  μg/day dur-
ing the following 3 weeks. There is an interval for 2 weeks 
at the end of the first cycle. During the following cycles, 
each cycle includes continuous blinatumomab adminis-
tration at the dose of 28 μg/day for 4 weeks and an inter-
val for 2 weeks [57].

Adverse events of blinatumomab
A number of adverse events have been observed dur-
ing blinatumomab cycles. In a phase II study which 
included R/R B-ALL patients, the common adverse 

events during blinatumomab therapy included pyrexia 
(81%), fatigue (50%), headache (47%), tremor (36%), and 
leukopenia (19%). Most of the adverse events occurred 
during the first cycle of administration [57]. In a study 
including adult Ph- R/R ALL patients in Korean, the 
most common side effects included infection (50%), 
neurological adverse events (36%), and cytokine release 
syndrome (CRS) (20%; CRS of grade 3 or higher, 4%) 
[58]. In another trial including Ph + ALL patients, the 
most common adverse events of grade 3 or higher 
involved neutropenia (27%), thrombocytopenia (22%), 
and anemia (16%) [52]. Adverse effects were compared 
between the blinatumomab group and the chemother-
apy group in a clinical trial which included advanced 
ALL patients. Although patients in the blinatumomab 
group suffered more adverse events, the rate of severe 
adverse effects in the blinatumomab group was lower 
than the rate in the chemotherapy group [68]. Com-
pared with CAR-T therapy, blinatumomab is associated 
with a lower incidence of CRS, which is the advantage 
of blinatumomab [34].

Severe CRS and neurological adverse events are the 
main reasons for the interruption of blinatumomab 
therapy. CRS is caused by the release of a large number 
of cytokines and the following systemic inflammation. 
The clinical manifestations of CRS include high fever, 
skin rash, vomiting, and nausea [59]. This problem can 
be attributed to abnormal activation of effector T cells 
and macrophages induced by blinatumomab. Activated 
T cells release high levels of IFN-γ and other cytokines, 
which can induce macrophages to release high levels of 
IL-6 and IL-10 subsequently. Severe patients even suf-
fer the problem of hemophagocytic lymphohistiocytosis 
(HLH) [60]. IL-6 is the center of this pathological pro-
cess. Other cytokines including TNF, IL-2, GM-CSF, and 
IL-5 also participate in this process [61, 62]. Severe CRS 
can be prevented by the administration of dexametha-
sone beforehand and stepwise dosing [57, 58, 63]. Toci-
lizumab, an anti-IL-6 receptor monoclonal antibody, is 
effective in patients with HLH [60].

The neurological adverse events can be attributed 
to the redistribution of activated T cells. Activated T 
cells induced by blinatumomab attach to cerebral ves-
sels and move to cerebrospinal fluid. Sedimentation of 
T cells causes microcirculation dysfunction and local 
ischemia which ultimately result in neurological symp-
toms. Patients with diminished B/T cell ratios are more 
likely to suffer neurological adverse events [64]. Although 
neurological adverse events can occur in patients with 
CRS, there is still no evidence that neurological adverse 
events are associated with the release of cytokines [65]. 
The neurological symptoms can be controlled after the 
withdrawal of blinatumomab treatment [57]. Severe 
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neurological events can be prevented by administration 
of steroids in advance and close clinical monitoring [66].

AFM11
Although blinatumomab is a promising drug to defeat 
ALL, this antibody is still limited in clinical practice. 
Firstly, blinatumomab requires persistent administra-
tion due to its short half-life, which limits the generaliz-
ing of blinatumomab. Secondly, only less than half of the 
patients with R/R ALL had a partial or complete response 
to blinatumomab therapy whereas other R/R ALL 
patients lacked effective treatments. A new drug with 
higher efficacy and a longer half-life is in demand.

AFM11 is a TandAb with a longer half-life and better 
affinity to both CD3 and CD19. The efficacy of AFM11 
has been demonstrated in preclinical studies. In  vitro 
experiments have proved that AFM11 mediated the 
CD19 specific cytotoxic effect. AFM11 could activate T 
cells and promote apoptosis of leukemia cells in chronic 
lymphocytic leukemia (CLL) and small lymphocytic lym-
phoma. The cytotoxicity of AFM11 was stronger than bli-
natumomab in vitro [67]. AFM11 could also reinvigorate 
exhausted T cells induced by chemotherapy [68]. AFM11 
was investigated in a phase I clinical trial which included 
patients with R/R B-ALL. However, the development of 
AFM11 was interrupted after one death caused by neuro-
logical adverse events.

Acute myeloid leukemia
Acute myeloid leukemia (AML) is the most frequent 
acute leukemia in adults and the incidence increases 
with age [69]. AML is a highly heterogeneous disease 
caused by mutations in hematopoietic stem/progeni-
tor cells. Multiple mechanisms including upregulation 
of Wnt signaling pathway result in abnormal prolifera-
tion and differentiation of bone marrow stem cell clones 
[70]. The treatment of AML is still a gigantic challenge 
in the field of hematologic oncology. Cytosine arabino-
side and anthracyclines are the basis of AML therapy. 
About 40%-45% of young patients and 10%-20% of elderly 
patients can be cured in this way [71]. However, the 
cure rate for patients with R/R AML is lower than 10% 
[72]. Allo-HSCT used to be the single choice for R/R 
AML patients, but only a fraction of patients received 
this treatment [73]. Elderly patients rarely received this 
treatment because allo-HSCT was associated with poor 
prognosis and a high recurrence rate among them [74]. 
Immunotherapy which stimulates the immune system by 
targeting immune pathways has revolutionized the field 
of AML therapy. Gemtuzumab ozogamicin was approved 
as an antibody–drug conjugate for the treatment of 
AML in 2000, which has significantly promoted the 
development of other immunotherapies such as BsAbs 

[75]. Currently, a considerable number of BsAbs for the 
treatment of AML are in clinical trials and the mem-
bers include BiTEs, DARTs, and TandAbs. Many tumor 
surface antigens are potential targets of BsAbs, such as 
CD123, CD33, FMS-like tyrosine kinase 3 (FLT3), C-type 
lectin domain family 12 member A (CLEC12A), and 
Wilms’ tumor gene 1 (WT1) [76].

CD123/CD3
CD123, also known as the interleukin 3 receptor alpha 
chain (IL-3Rα), is overexpressed in many hematological 
malignances, including AML, Hodgkin lymphoma (HL), 
and blastic plasmacytoid dendritic cell neoplasm [77]. 
CD123 is mainly overexpressed in CD34 + /CD38- AML 
cells [78]. And the overexpression of CD123 is predictive 
of inferior prognosis [79]. Several BsAbs targeting CD123 
and CD3 simultaneously such as MGD006, XmAb14045, 
and JNJ-63709178 are currently in clinical trials for the 
treatment of AML. And the preliminary results of clinical 
trials focusing on MGD006 and XmAb14045 have been 
published.

MGD006
MGD006 is a DART which targets CD123 and CD3 
simultaneously [80]. Compared with BiTEs, it has bet-
ter stability and manufacturability. It recruits T lym-
phocytes to CD123 + tumor cells, which induces T cell 
activation, T cell proliferation and CD123 + tumor cell 
lysis [81]. Currently, the safety and efficacy of MGD006 
in AML patients has been demonstrated in a phase I/
II clinical trial (NCT02152956). The CR/CRh rate was 
26.7% and the total effective rate (CR/CRh/ complete 
remission with incomplete count recovery) was 30.0% 
among primary induction failure/early relapsed patients 
treated at the recommended phase II dose of 500 ng/kg/
day. The median overall survival was 10.2  months and 
the 6- and 12-month survival rates were 75% and 50%, 
respectively, among patients who achieved CR/CRh [82]. 
MGD006 needs continuous infusion because the half-
life of MGD006 is short [83]. Like other BsAbs, the most 
common adverse reaction to MGD006 is CRS. The trial is 
ongoing and the focus of the research is laid on primary 
induction failure/early relapsed AML.

XmAb14045 (Vibecotamab)
XmAb14045 is an anti-CD123/CD3 BsAb produced by 
XmAb technique. Different from MGD006, XmAb14045 
is intermittently administered because the half-life of 
XmAb14045 is extended. XmAb14045 has been inves-
tigated in a phase I clinical study since 2016. In part A 
of the study, 23% of the 64 R/R AML patients had com-
plete responses to XmAb14045 monotherapy. One of 
them remained in remission 14  weeks after the initial 
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treatment without stem cell transplantation. CRS was 
present in 77% of the R/R AML patients treated with 
XmAb1404. The optimal dosing regimen is being studied 
in part B of this clinical trial [77].

CD33/CD3
CD33, a member of sialic acid-binding sialoadhesin 
receptors, is selectively expressed on AML cells [84]. It 
was reported that CD33 was expressed in 87.8% of 319 
AML patients, thus CD33 could be an ideal therapeu-
tic target for AML [85]. Since gemtuzumab ozogamicin 
was approved for treating AML, BsAbs targeting CD33 
and CD3 have been developed rapidly. BsAbs including 
AMG330 (NCT02520427), AMG673 (NCT03224819), 
AMV564 (NCT03144245), and GEM333 
(NCTT03516760) are currently in clinical trials.

AMG330
AMG330 is a BiTE binding with CD33 and CD3 simul-
taneously. AMG330 can promote the proliferation 
and activation of T cells, which result in the lysis of 
CD33 + human AML cells [86]. AMG330 has been dem-
onstrated to attack CD33 + myeloid derived suppressor 
cells (MDSCs) through T cell-mediated cytotoxicity [87]. 
An ongoing phase I clinical trial of AMG330 is investi-
gating the safety and tolerated dose of this antibody 
(NCT02520427).

AMV564
AMV564 is a TandAb containing two binding sites for 
CD3 and two binding sites for CD33 separately. This 
structure improves not only its binding affinity for tar-
get cells, but also its molecular weight. Because of the 
increased molecular weight, AMV564 is more difficult 
to be cleared by the kidney compared with AMG330, 
which gives it a longer half-life [88]. Phase I clinical tri-
als of AMV564 in patients with AML, myelodysplastic 
syndromes (MDS), and solid tumors are currently ongo-
ing. In a phase I clinical trial, R/R AML patients received 
increasing doses of intravenous injection of AMV564 
for 14 days. It has been demonstrated that AMV564 was 
well tolerated, safe and selective. The annual meeting of 
the Cancer Immunotherapy Society (SITC) also reported 
that AMV564 could bolster anticancer immunity by 
depleting immunosuppressive MDSCs and promoting T 
cell activation.

FLT3/CD3
FLT3 is a class III receptor tyrosine kinase that plays an 
important role in the proliferation of hematopoietic cells 
and lymphocytes. It regulates the survival and growth of 
hematopoietic stem cells, maturation of dendritic cells, 
and maintenance of regulatory T cell homeostasis [89]. 

Aberrant expression of FLT3 is closely related to the 
occurrence of AML and other malignant tumors. FLT3 is 
overexpressed in more than 70% of AML cases, so FTL3 
is an effective target for AML treatment [90]. 7370 is an 
anti-FLT3/CD3 IgG-based BsAb with advantages of a 
long half-life and high affinity. 7370 could potently acti-
vate human T cells against FLT3 + AML cells in vivo. And 
7370 was well tolerated in cynomolgus monkeys. Moreo-
ver, 7370 has shown potential clinical values in AML 
patients regardless of the FLT3 mutation status [91].

CLEC12A/CD3
CLEC12A, also known as human C-type lectin like mol-
ecule-1 (CLL-1) or myeloid inhibitory C‐type lectin‐like 
receptor (MICL), is specifically expressed in AML pro-
genitor cells and leukemia stem cells [92]. CLEC12A 
is overexpressed in 90–95% of new or recurrent AML 
cases, but it is rare in normal tissues. Thus, CLEC12A 
is a potentially effective target for AML therapy [93]. 
Supported by Biclonics platform, MCLA-117 is a full-
length human bispecific IgG that specifically binds 
CLEC12A + AML cells and CD3 + T cells. Pieter Fokko 
Van Loo et  al. demonstrated that MCLA-117 effec-
tively recruited cytolytic T cells to attack tumor cells in 
10 of 11 primary AML samples. MCLA-117 strongly 
induced killing of AML cells (23%-98%) at low effector-
to-target ratios (1:3–1:97) through activating autologous 
bone marrow T cells in primary AML patient samples. 
Because MCLA-117 has the potential to selectively tar-
get CLEC12A + myeloid cells without affecting normal 
hematopoietic stem cells, it has the ability to restore nor-
mal hematopoietic function and prevent the hematotox-
icity induced by MCLA-117 [94]. MCLA-117 is currently 
under a phase I clinical study (NCT03038230) which 
focuses on evaluating the efficacy and safety of MCLA-
117 in adult patients with AML.

WT1/CD3
WT1 is a tumor-associated antigen located on chromo-
some 11p13. WT1 plays an important role in the control 
of cell growth and differentiation [95]. WT1 is overex-
pressed in leukemia and many solid tumors, especially 
in AML samples. Therefore, WT1 is an ideal target for 
AML therapy [96]. A BiTE molecule derived from ESK1, 
a TCR-mimic monoclonal antibody, can specifically bind 
WT1 + cells from HLA-A*02:01 + AML cell lines and 
CD3 + T cells. Its efficacy of killing WT1 + AML cells has 
been proved by experiments in vitro and in mouse mod-
els [97].

Multiple myeloma
Multiple myeloma (MM) is characterized by the pro-
liferation of malignant plasma cells [98]. The median 
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overall survival of MM patients has been improved to 
5  years because of the introduction of new drugs [99]. 
Although the survival of patients is increasing with the 
continuous progress of therapeutic regimens, MM is still 
an incurable disease and almost all MM patients even-
tually relapsed [100]. Many bispecific T cell-recruiting 
antibodies for the treatment of MM have been developed 
rapidly in recent years. The ideal targets of BsAbs for 
treating MM include B cell maturation antigen (BCMA), 
G protein-coupled receptor 5D (GPRC5D), CD38, and Fc 
receptor-like 5 (FCRL5).

BCMA/CD3
BCMA, a tumor necrosis factor receptor, is generally 
expressed on mature B cells. It plays a key role in the 
survival and proliferation of B cells, especially the long 
term survival of plasma cells [101]. The ligand of BCMA, 
a proliferation-inducing ligand, also participates in the 
progression of MM [102]. BCMA is expressed specifically 
on MM cells, which makes it an ideal target for the ther-
apy of MM. Serum B cell maturation antigen (sBCMA) is 
produced by BCMA cleavage and is related to poor clini-
cal outcomes [103]. The poor prognosis can be attrib-
uted to its interaction with BCMA signaling pathways 
in normal cells [104]. There have been many BCMA tar-
geted therapies for the treatment of MM patients, such 
as BsAbs, CAR-T cells, and antibody–drug conjugates 
[102, 105, 106]. BiTEs targeting BCMA have been inves-
tigated in clinical trials and the preliminary results are 
promising.

AMG 420
AMG 420 is a BiTE composed of two scFvs derived 
from one anti-BCMA antibody and one anti-CD3 anti-
body respectively. Preclinical studies have proved that 
AMG420 could induce BCMA-dependent T cell activa-
tion and MM cell apoptosis. In  vivo experiments also 
proved that AMG420 could consume BCMA + MM cells 
in cynomolgus monkey models [107]. The first in-human 
dose-escalation trial has been executed to evaluate the 
efficacy and safety of AMG420 in R/R MM patients. The 
dose ranged from 0.2 µg/ d to 800 µg/ d and the drug was 
administered by continuous intravenous infusion. This 
study demonstrated that the dose of 800 µg/d could not 
be tolerated by patients. But the dose of 400  µg/d was 
appropriate. At the dose of 400  µg/d, the response rate 
and CR rate reached 70% (7/10) and 50% (5/10), respec-
tively. In this trial, the overall response rate was 31% 
(13/42).

The adverse effects of AMG 420 in this clinical trial 
were acceptable. 38% of 42 R/R MM patients suffered 
CRS and one of them reached grade 3. Severe cen-
tral nervous system adverse events were not observed. 

Common severe adverse events included infections 
(14/42) and polyneuropathy (2/42). Compared with bli-
natumomab, the adverse event rates of AMG 420 were 
lower, which might be attributed to the distinctions 
between CD19 and BCMA and the differences between 
diseases [108].

AMG 701
AMG 420 should be administered by persistent intra-
venous infusion to maintain its blood concentration. 
This character has restricted the application of AMG 
420. Another BCMA/CD3 BiTE with a longer half-life 
is required. And AMG 701 meets the demand because 
the Fc domain enables it to have a longer half-life. An 
experiment in  vitro demonstrated that AMG 701 ena-
bled T cells to attack tumor cells more efficiently. Animal 
experiments demonstrated that AMG 701 restricted MM 
tumor growth in mouse models and resulted in the con-
sumption of plasma cells in cynomolgus monkey models. 
The combination therapy with PD-1 blockers resulted in 
synthetic effects [109]. Immunomodulatory imide drugs 
including lenalidomide and pomalidomide could make 
AMG 701 more potent in xenograft models [110]. Phase 
I clinical trials of AMG 701 in patients with R/R MM are 
being conducted.

GPRC5D/CD3
GPRC5D is a seven transmembrane protein expressed 
on MM cells specifically [111]. It is predictive of the poor 
outcomes of MM patients. High expression of GPRC5D 
is associated with translocation t (4;14) (p16; q32), which 
is also a poor predictive factor [112, 113]. Compared 
with BCMA, GPRC5D is fixed more firmly to the mem-
brane because of its seven transmembrane structure. 
So the protein is less likely to shed from the membrane 
and T cells can also be bound to tumor cells in a tighter 
way, which promotes the cytotoxicity of BsAbs [114]. 
GPRC5D is a promising target for treating MM and anti-
GPRC5D/CD3 BsAbs are being developed.

Talquetamab, also known as GPRC5D T cell–redirect-
ing antibody, recruits T cells to tumor cells and activate 
T cells. It is produced on the base of DuoBody technol-
ogy. This drug has shown anti-tumor activity in xenograft 
mouse models. However, we still lack information about 
the safety of this drug [111]. A clinical trial focusing on 
the safety and recommended phase II dose of talqueta-
mab in R/R MM patients is ongoing (NCT03399799).

CD38/CD3
CD38 is a transmembrane protein which consists of an 
intracellular domain, a transmembrane helix, and a larger 
extracellular domain [115]. CD38 is selectively expressed 
on MM cells, thus this molecule enables researchers to 
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distinguish MM cells from normal cells [116]. Daratu-
mumab, a CD38 monoclonal antibody, has been dem-
onstrated to be efficient and safe in MM patients [117]. 
Researchers have developed several anti-CD38/CD3 
BsAbs including AMG 424 and Bi38-3.

AMG 424, a bispecific T cell-recruiting antibody based 
on XmAb platform, was selected from a group of anti-
CD38/CD3 bispecific drugs because it could delete tar-
get cells efficiently without causing severe CRS. AMG 
424 can delete CD38 + tumor cells at low concentration 
and it is expected to be potent in relapsed patients after 
daratumumab therapy. Although T cells expressing CD38 
might be attacked by AMG 424, this side effect is accept-
able because the advantages outweigh the disadvantages 
[118]. Another anti-CD38/CD3 BiTE, Bi38-3, has also 
shown its efficacy. Bi38-3 could restrict the growth of 
xenograft MM tumor in mouse models. Compared with 
AMG 424, Bi38-3 has fewer adverse effects on normal 
cells [119].

FCRL5/CD3
FCRL5 is expressed on the sub-groups of B cells. Anti-
FcRH5/CD3 BsAbs can recruit T cells to attack plasma 
cells and MM cells [120]. The extracellular domain of 
FcRH5 is large, which interferes with the crosstalks 
between T cells and tumor cells. The anti-FcRH5/CD3 T 
cell-dependent bispecific antibody (TDB) developed on 
the base of KiH technique has shown efficacy in attacking 
FCRL5 + MM cells. In mouse models and cynomolgus 
monkey models, anti-FcRH5/CD3 TDB could restrict the 
growth of xenograft MM cells. The combination therapy 
with PD-1/PD-L1 blockers could improve the potency 
of anti-FcRH5/CD3 TDB. The half-life of anti-FcRH5/
CD3 TDB is long, thus it should be administered inter-
mittently. Release of cytokines usually happened imme-
diately after administration, but it was not severe nor 
persistent [121].

Non‑Hodgkin lymphoma
Non-Hodgkin lymphoma (NHL) includes all lymphomas 
except for Hodgkin lymphomas. There are huge differ-
ences between aggressive lymphomas and indolent lym-
phomas. It has been proved that the interaction between 
lymphomas and the immune system plays a key role in 
the development of lymphomas [122–125]. Antibodies 
which regulate the immune system have been proved 
to be efficient in deleting NHL cells [126]. BsAbs which 
target NHL cells and T cells simultaneously can form 
synapses between targeted cells and induce cytotoxic-
ity of T cells [127]. Ideal targets of BsAbs include CD19, 
CD20, and CD47. The Efficacy of blinatumomab in NHL 
patients has been illustrated in the efficacy of blinatu-
momab part. Although BsAbs have shown impressive 

efficacy in NHL therapy, they are not satisfying in CLL 
therapy. CLL is a highly heterogeneous disease with 
acquired immune dysfunction. Prognostic biomarkers 
and risk scoring systems play important roles in guid-
ing CLL treatment decisions [128]. The strong immu-
nomodulatory effect of CLL causes low response rates 
to immunotherapy strategies. The emerging antibody 
products with experimental evidence, such as OTSSP167, 
mosunetuzumab, and blinatumomab, have offered hope 
to CLL patients[129, 130].

CD20/CD3
CD20 is a kind of unglycosylated phosphoprotein. It is 
specifically expressed on B cells and is an ideal target for 
the treatment of B cell malignancies. Rituximab, an anti-
CD20 monoclonal antibody, has been widely used in the 
clinical treatment of NHL [131]. However, there are a 
fraction of patients who have no response to rituximab 
therapy [132]. Anti-CD20/CD3 BsAbs which can mediate 
the interaction between T cells and CD20 + tumor cells 
are a viable option for the treatment of R/R NHL.

REGN1979
REGN1979, an anti-CD20/CD3 BsAb with the natural 
IgG-like structure, is being evaluated among R/R B-NHL 
patients in a phase I clinical trial. At the doses of 5-27 mg, 
the ORR in R/R FL (Gr 1–3a) patients reached 100% and 
the ORR in R/R DLBCL patients was 40%. In R/R DLBCL 
patients treated with REGN1979 and REGN2810, the 
response rate rose with the dose of REGN1979. At doses 
of 5-12  mg, the response rate in R/R DLBCL patients 
was 18% (2/11). At doses of 18-40 mg, the rate was 55% 
(6/11). When the dose increased to 80 mg, the response 
rate was 100% (2/2). But the higher dose was related to 
the higher rate of CRS.

CD20‑TCB
CD20-TCB (RG6026) is an anti-CD20/CD3 BsAb with 
two CD20 binding sites and one CD3 binding site. This 
unique 2:1 Crossmab format promotes the function of T 
cells efficiently. Compared with other BsAbs, CD20-TCB 
has a longer half-life and higher potency. A phase I study 
has proved that the ORR in R/R NHL patients was 38% 
when the dose reached 300  µg or higher. The common 
adverse drug reactions included neutropenia and CRS. 
In order to improve the safety of CD20-TCB, researchers 
have combined CD20-TCB with obinutuzumab pretreat-
ment and this therapeutic regimen is being investigated 
[133].

Mosunetuzumab
Mosunetuzumab is an anti-CD20/CD3 BsAb with a full-
length humanized structure and the production of this 
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antibody is supported by KiH technology [134]. This 
drug, also known as CD20-TDB, can recruit T cells to 
attack xenograft CLL cells in mouse models [135]. In a 
phase I study which included R/R NHL patients, mosu-
netuzumab has shown promising potency. The ORR in 
indolent NHL patients and aggressive NHL patients were 
64.1% and 34.7%, respectively.

CD47
CD47 is composed of an extracellular V-set IgSF domain, 
a transmembrane-spanning domain and a selectively 
spliced cytoplasmic tail [136]. CD47 is widely expressed 
in normal human cells, but it is specifically overexpressed 
in NHL cells [137]. The interaction between CD47 and 
signal regulatory protein alpha (SIRPα) plays an impor-
tant role in the progression of NHL. CD47 interacts with 
SIRPα and sends a "don’t eat me" signal to macrophages, 
thus inhibiting the macrophage phagocytosis of tumor 
cells [123]. Therefore, several therapeutic strategies have 
been developed to block the CD47-SIRPα signaling path-
way. These drugs include TTI-621, HU5F9-G4, ALX-148, 
and CC-90002 [138]. CD20-CD47SL, a BsAb targeting 
CD47 and CD20, was investigated by Piccione et  al. for 
the treatment of NHL. CD20-CD47SL was demonstrated 
to eliminate detectable NHL cells in mouse models. 
Compared with anti-CD20 monotherapy and anti-CD47 
monotherapy, CD20-CD47SL significantly prolonged the 
survival of mice [139]. BsAbs targeting CD47 belong to 
the rapidly advancing frontier and more novel antibodies 
are being developed.

Hodgkin lymphoma
Hodgkin lymphoma (HL) is a sort of B cell lymphoid 
hematopoietic malignancy. HL is characterized by 
CD30 + Reed-Sternberg cells surrounded by the immu-
noinhibitory microenvironment consisting of lympho-
cytes, eosinophils, plasma cells, and neutrophils [140]. 
Therefore, there are immune barriers to the success of 
immunotherapy for HL. To optimize the treatment of 
HL, one anti-CD30 antibody–drug conjugate (brentuxi-
mab vedotin) and two immune checkpoint inhibitors 
(nivolumab and pembrolizumab) have been developed 
and these drugs can significantly improve the prognosis 
of R/R HL [141]. BsAbs targeting CD30 are also promis-
ing for the treatment of HL. AFM13 is a bispecific NK-
cell engager that specifically targets CD30 + HL cells 
and CD16A + NK cells. It can activate NK cells and 
induce tumor cell apoptosis effectively [142]. The safety 
and tolerability of AFM13 in HL treatment has been 
demonstrated in a phase I trial implemented by Achim 
Rothe et  al. The overall effective rate of AFM13 in R/R 
HL patients was as high as 61.5% [143]. More studies 

focusing on AFM13 in HL patients are being conducted 
to improve the efficacy of the treatment.

Myelodysplastic syndromes
Myelodysplastic syndromes (MDS) are a group of highly 
heterogeneous hematologic malignancies originating 
from hematopoietic stem cells. They are characterized by 
ineffective intramedullary hematopoiesis which results 
in myeloid hyperplasia and peripheral blood cytopenia 
[144]. The biological and clinical manifestations of MDS 
vary widely but the treatment options are limited, includ-
ing follow-up observation, erythropoietic stimulants 
therapy, immunosuppressive therapy, demethylation 
therapy, and HSCT [145]. The survival rate of patients 
with MDS is low. About 25% of high-risk and very 
high-risk MDS develop to AML within one year [146]. 
Therefore, it is necessary to develop novel and effective 
therapies to treat patients with MDS.

It has been demonstrated that CD123 is overexpressed 
in the bone marrow of MDS patients, which indicates 
that CD123 is an ideal biological marker and therapeutic 
target of MDS [147]. Several antibodies targeting CD123, 
such as KHK2823 and IMGN632, are in clinical trials 
(NCT02181699 and NCT03386513). MGD006, a DART 
that targets CD123 and CD3, is currently under a phase 
I clinical trial.

There is evidence that the proportion of CD33 + cells 
increases in the bone marrow of MDS patients and bispe-
cific T cell-recruiting antibodies targeting CD33 are 
being developed. AMV564, a tetravalent anti-CD33/CD3 
BsAb, has been proved to be efficient in treating MDS. 
It could delete MDS cells dose-dependently and restore 
immune homeostasis in vitro. The phase I clinical trial of 
AMV564 in MDS patients is underway [148, 149].

Conclusions
BiTEs have shown great potency in treating patients 
with hematologic malignancies. By binding T cells and 
tumor cells through the specific structure, bispecific T 
cell engagers enhance tumor lysis effectually and provide 
relapse/refractory patients with feasible options regard-
less of mutations or T cell dysfunction. Further advances 
in molecular structures, dosing regimens and combina-
tion therapies can help to improve the efficacy and safety 
of BiTEs. Innovative platforms enable the production of 
novel bispecific T cell-recruiting antibodies with higher 
affinity, greater flexibility and longer half-lives. The effi-
cacy and toxicity of emerging new drugs are evaluated 
in clinical trials. Deeper investigation of combination 
therapy with PD-1/PD-L1 blockers is expected to pre-
vent tumor escape efficiently. We are optimistic that such 
knowledge will facilitate the evolution of anti-tumor 
strategies focusing on BiTEs.
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