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rAbstract )

Diagnosis, Clinicopathology, Prognosis

Circular RNAs (circRNAs) are a new class of endogenous regulatory RNAs characterized by covalently closed cyclic
structure lacking poly-adenylated tails, and are capable of regulating gene expression at transcription or post-tran-
scription levels. Recently, plentiful circRNAs have been discovered in breast cancer and some circRNAs expression pro-
files are specifically involved in the triple-negative breast cancer (TNBC). TNBC is a type of malignant tumor defined
by the lack of estrogen receptor, progesterone receptor, and human epidermal growth factor receptor 2 expression.
Considering its clinical characteristics of high invasion, metastasis, poor prognosis, and lack of effective response to
conventional chemotherapies or targeted therapies, it could be a promosing option to discover specific circRNAs as
new targets for TNBC treatment. Meanwhile, accumulating evidence has demonstrated that circRNAs are dysregu-
lated in TNBC tissues and are correlated with clinicopathological features and prognosis of TNBC patients. Further-
more, looking for circRNAs with high specificity and sensitivity will provide a new opportunity for the early diagnosis,
clinical treatment, and prognosis monitoring of TNBC. Herein, we reviewed the biogenesis, regulatory mechanisms,
and biological functions of circRNAs in TNBC and summarized the relationship between circRNAs expression and the
clinicopathology, diagnosis, and prognosis of patients with TNBC.
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Background

Breast cancer (BC) is the most common malignant dis-
ease among females and seriously threatens the health
of women worldwide [1, 2]. Triple-negative breast can-
cer (TNBC) is the subtype of BC with the highest recur-
rence, metastasis, and mortality rate. It is pathologically
characterized by the absence of estrogen receptor (ER),
progesterone receptor (PR), and human epidermal
growth factor receptor 2 (HER2) [3, 4]. TNBC accounts
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for approximately 15% of all BCs, with typically more
aggressive characteristics and lack of effective targeted
treatment options [5, 6]. Therefore, early detection and
feasible targeted therapy are especially important for
TNBC patients. Traditionally, many clinicopathologi-
cal features, such as tumor size, lymph node status, and
histological grade, are associated with patient outcomes
and are used to predict patient prognosis [7]. Several
newly identified biomarkers, such as tumor-associated
macrophages (TAMs), microRNAs (miRNAs), and long
non-coding RNA (IncRNAs), also have important prog-
nostic values [8]. In recent years, circular RNAs (circR-
NAs) have attracted a lot of attention due to their key
roles involved in human cancers, including TNBC.
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CircRNA was first observed in the 1976 by Sanger et al.
in plant-infected viroids by electron microscopy and were
considered pathogenic because of their structural simi-
larity to viruses [9]. They were later discovered in eukary-
otes and were thought to be a result of splicing errors for
several decades after the 1970s [10, 11]. However, more
recent studies of circRNAs in drosophila, mouse, and
other eukaryotes indicate that these RNA transcripts are
evolutionarily conserved and thus are not simple artifacts
of faulty splicing [12, 13]. In addition, with the advances
in sequencing technology and bioinformatics analyses,
the abundance and diversity of circRNAs therefore can
been easily identified [14, 15]. High-throughput RNA
sequencing (RNA-seq) and microarray are widely used
technology to annotate new RNA species and quantify
RNA abundance, which have identified the majority of
circRNAs in human cells. Besides, increasing bioinfor-
matic algorithms have been developed for identifying cir-
cRNAs, such as circRNA_finder, find_circ, CIRCexplorer,
CIRI, and MapSplice [16]. The mainly validation methods
for circRNA expression are quantitative real-time PCR
(qRT-PCR) and Northern blotting, and Northern blot-
ting is a more stringent circRNA validation method than
qRT-PCR, given its straightforward procedure with no
reverse transcription and amplification steps [17].

Researchers have identified that circRNAs possess sig-
nificant roles in regulation of multiple factors at tran-
scription or post-transcriptional levels in mammalian
cells, and dysregulations of circRNAs can affect genes
expression and lead to diseases [18-20], including can-
cer [21, 22]. Many studies using microarray and RNA-seq
revealed that circRNAs can be frequently detected in BC
[23, 24]. Especially, recent studies depicted the system-
atic profiling and characterization of circRNA expres-
sion pattern in different subtypes of BC [25, 26], and such
subtype-specific set of circRNAs may be used for distin-
guishing the tumor subtypes, suggesting that circRNAs
can be exploited as novel molecular biomarkers. Notably,
more and more evidence have indicated that dysregula-
tion of circRNAs participate in carcinogenesis and pro-
gression of TNBC, as a result, certain circRNAs could be
potentially diagnostic and prognostic biomarkers or ther-
apeutic targets for TNBC [27-29]. Hence, we concen-
trated on recent findings related to the role of circRNAs
in TNBC and summarized their potential clinical impli-
cations in TNBC, such as identification of biomarkers for
early and differential diagnosis, prognosis, and prediction
of response to specific therapies.

The biogenesis of circRNAs

CircRNAs are derived from precursor messenger RNAs
(pre-mRNAs), which are transcribed by RNA polymerase
II, and characterized by circular shapes resulting from
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covalently closed continuous loops [30, 31]. With their
unique structures, circRNAs are resistant to exonuclease
RNase Rand, which makes them more conservative and
stable than their linear counterparts [32]. CircRNAs are
mainly divided into four types according to their vari-
ous components and circularization mechanism, includ-
ing exon circRNAs (EcircRNAs), circular intronic RNAs
(ciRNAs), exon—intron circRNAs (EIciRNAs), and inter-
genic circRNAs or fusion circRNAs (f-circRNAs) [33].
EcircRNAs, consisting of only one exon or multiple
quantities of exons and forming through a shearing pro-
cess called “head-to-tail” or “backsplicing’, make up over
80% of circRNAs and mostly exist in the cytoplasm [34].
EIciRNAs are predominantly located in the nucleus and
is circularized in the form of retaining introns between
exons [35]. There are currently three models, namely
intron-pairing-driven circularization, RNA-binding-pro-
tein (RBP)-dependent circularization, and lariat-driven
circularization, that have been recognized to elaborate
the origination of EcircRNAs and EIciRNAs (Fig. 1) [36].
Notably, a newly discovered type of circRNA termed
ciRNAs, are derived from introns and mainly found in
the nucleus. There are also three hypothetical models
explaining the formation of ciRNAs, including circular
RNA from group I introns, circular RNA from group II
introns, and intron RNA lariat (Fig. 2) [36, 37]. The f-cir-
cRNAs are identifed by applying CIRI (an algorithm for
de novo circular RNA identification) and contain two
intronic circRNA fragments flanked by GT-AC splic-
ing signals acting as the splice donor and acceptor of the
circular junction while forming an integrated circRNA
(Fig. 1d) [38].

Regulatory mechanisms of circRNAs in TNBC
CircRNAs are a novel class of abundant, stable and ubiq-
uitous noncoding RNAs with diverse regulatory roles in
tumor cells, including serving as miRNA sponges, bind-
ing to RBPs, modulating genes transcription, competing
with linear splicing, translating into protein, and so on
[20, 39]. In TNBC, the circRNAs has not yet been found
to modulate genes transcription and compete with lin-
ear splicing. The regulatory mechanisms of circRNAs
involved in TNBC cells are depicted in Fig. 3 and Table 1,
which summarized most circRNAs involved in TNBC.

CircRNAs serve as miRNA sponges

MiRNAs negatively regulate the gene expression of mes-
senger RNAs (mRNAs) through direct base pairing to
target sites in mRNA 3’ untranslated regions, eventually
leading to decreased mRNA stability and translation sup-
pression [40]. The competing endogenous RNA (ceRNA)
hypothesis showed that other RNAs with miRNA target
sites can compete with mRNAs for miRNA binding [41].
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Fig. 1 Biogenesis mechanism of EcircRNA and EICiRNA circRNAs. a Intron-pairing-driven circularization: the upstream intron pairs with the
downstream intron, then the 2/-hydroxyl of the upstream intron reacts with the 5’-phosphate of the downstream intron, followed by the
3’-hydroxyl of the 3-exon reacting with the 5/-phosphate of the 5’-exon; b RBPs-dependent circularization: RNA binding proteins (RBPs) bind the
upstream and downstream introns and are attracted to each other, and form a bridge between the introns, then the 2/-hydroxyl of the upstream
intron reacts with the 5’-phosphate of the downstream intron, followed by the 3/-hydroxyl of the 3/-exon reacting with the 5/-phosphate of the
5’-exon; ¢ Lariat-driven circularization: Folding of a region of pre-RNA can result in exon skipping; furthermore, the splice donor in 3’ end of exon 1
and the splice acceptor in 5" end of exon 4 are covalently joined together to form a lariat containing exon 2 and exon 3; d Fusion-circRNAs contain
two exon circRNA fragments flanked by GT-AC splicing signals acting as the splice donor and acceptor of the circular junction while forming an
integrated circRNA
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Fig. 2 Biogenesis mechanism of intronic circRNA. a Circular RNA from group | introns: first, an exogenous guanosine (G) attacks the 5/-terminus of
the intron as nucleophile and the 5/-exon is cut off due to the transesterification; Second, the 3’-hydroxyl of the free exon attacks the 5’-terminus of
the 3’-exon as nucleophile, producing a linear intron; Third, a 2’-hydroxyl close to the 3’-terminus of the linear intron attacks a phosphodiester bond
close to the 5'-terminus, producing an RNA lariat circularized with 2/,5"-phosphodiester and releasing the 5’-terminal sequence; b Circular RNA
from group Il introns: the pre-mRNA releases the 3/-exon, then the 2’-hydroxyl of the 3’-terminus attacks the 5’-terminus of the intron, producing
an circular RNA circularized with 2/,5'-phosphodiester; ¢ Intron RNA lariat: the pre-mRNA is spliced by a spliceosome, producing an RNA lariat
circularized with 2/,5’-phosphodiester
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Fig. 3 Regulatory mechanisms of circRNAs in TNBC. a Serving as miRNA sponge to compete endogenous RNA and sequester miRNAs from
binding mRNA targets to influence downstream protein translation; b Binding RBPs to block their function (protein decoy), form protein-circRNAs
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Indeed, most circRNAs, containing a large number of dif-
ferent types of miRNA response elements, are located
in the cytoplasm with huge miRNA-binding capacity
and have been found to interact with miRNA and serve
as miRNA sponges to remove the inhibitory effect of
miRNA on its target genes in cancer [42—44].

Most of the circRNAs currently reported in TNBC
serve as miRNA sponges (Fig. 3a). For instance, ciRS-
7, an earlier discovered circRNA in TNBC, contains 20
miR-1299-binding sites and functions as a ceRNA of
miR-1299 to enhance the expression of the matrix met-
alloproteinase family members, thereby contributing to
the high migration and invasion properties of TNBC
cells [45]. CircEPSTII promotes TNBC proliferation
and apoptosis by upregulating BCLI1A expression via
binding to miR-4753 and miR-6809 [46]. Zeng et al. [47]
reported that circANKS1B abundantly sponged miR-
148a-3p and miR-152-3p to increase the expression of
transcription factor USFI. Moreover, the splicing factor
ESRPI, regulated by USFI, can promote circANKS1B
biogenesis in TNBC. CircTADA2A-E6 preferentially
acts as an miR-203a-3p sponge to restore the expres-
sion of miRNA target gene SOCS3, resulting in a less
aggressive oncogenic phenotype [48]. Zheng et al. dem-
onstrated that circSEPT9 could regulate the expression

of LIF via sponging miR-637 and activating the LIF/
Stat3 signaling pathway involved in the progression of
TNBC. More importantly, they discovered that E2F1
and EIF4A3 enhance the expression of circSEPT9 by
binding to the SEPT9 promoter and pre-mRNA [49].
CircGFRA1 was found not only could upregulate TLR4
via sponging for miR-361-5p, thus affecting the sensi-
tivity of TNBC cells to paclitaxel (PTX) [50], but also
upregulate its parent gene GFRAI expression through
sponging miR-34a, thus promoting proliferation and
inhibiting apoptosis of TNBC cells [29]. Likewise,
circKIF4A and circITCH were proved to upregulate
its parental genes via acting as sponges for miRNAs
thereby mediating TNBC progress [51, 52]. Addi-
tionally, more miRNA-sponge functions of circRNAs
have been and are being validated in TNBC, includ-
ing circlUBAP2/miR-661/MTA1 [53], circPLK1/miR-
296-5p/PLK1 [54], circTFCP2L1/miR-7/PAK1 [55],
circAHNAK1/miR-421/RASA1 [56], circAGFGI1/miR-
195-5p/CCNE1 [57], circZEB1/miR-448/eEF2K [58],
circGNB1/miR-141-5p/IGFIR [59], circRPPHI/miR-
556-5p/YAPI [60], circCDYL/miR-190a-3p/TP53INP1
[61], circEIF3M/miR-33a/cyclinD1 [62], circUBE2D2/
miR-512-3p/CDCA3 [63], and circPGAP3/miR-330-3p/
Myc [64].
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CircRNAs interact with RBPs

CircRNAs could specifically bind to proteins directly
or through RNA as well as sequester proteins to block
the protein effects by working as competing ele-
ments (Fig. 3b) [65]. One classic example of circRNA
to interact with proteins is circFoxo3. It’s expres-
sion significantly promoted TNBC cell apoptosis with
upregulation of Foxo3, but downregulation of p53.
Mechanically, circFoxo3 prefered to bind MDM2 and
p53, instead of Foxo3 in MDA-MB-231 cells. As such,
circFoxo3 overexpression promoted MDM2-induced
p53 ubiquitination and subsequent degradation, but
competitively prevented MDM2-mediated Foxo3
ubiquitination and degradation, eventually leading to
cell apoptosis due to upregulation of the Foxo3 down-
stream target PUMA [66]. Moreover, circRNAs are
able to bind and sequester proteins. For example, circ-
MTOLI interacted with TRAF4 by serving as a ceRNA to
repress TRAF4 from binding to the Eg5 gene, leading to
sequester TRAF4 from activating Eg5 translation, thus
mediating TNBC cell resistance to monastrol [67].

CircRNAs encode proteins

CircRNAs were previously regarded as a distinct
class of endogenous non-coding RNAs that could not
translate proteins due to lack of 5-3 polarity, a poly-
adenylated tail, and an internal ribosome entry site
(IRES). However, recent studies indicated that some
cytoplasmic circRNAs can be effectively translated into
detectable peptides [68, 69]. IRES- and N[6]-meth-
yladenosines-mediated cap-independent translation
initiation have been suggested to be potential mecha-
nism for circRNA translation [70, 71]. To date, several
circRNAs have been uncovered to have the potential to
be translated into proteins, for instance, circZNF609,
circPABPN1 [72, 73]. In TNBC (Fig. 3c), circFBXW7 not
only can serve as a sponge of miR-197-3p to upregulate
its parent gene FBXW?7, but also encode the FBXW7-
185aa protein to increase the abundance of FBXW7,
thereby promoting c-Myc ubiquitination and degra-
dation, eventually suppressing TNBC cells growth
and metastasis [74]. More recently, Li et al. confirmed
that a newly identified HER2 transcriptional variant,
circHER2, had an open reading frame driven by an IRES
and could generate a 103 amino acid protein HER2-
103. HER2-103 could promote homo/hetero dimeri-
zation of epidermal growth factor receptor (EGFR)/
HER3 and sustain AKT phosphorylation and down-
stream malignant phenotype [75]. Whith the increasing
evidence prove that circRNAs could translate proteins
directly [72, 73, 76, 77], the notion of circRNAs are
non-coding RNAs is becoming doubtful.
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Role of circRNAs on the biological functions

of TNBC

CircRNAs play an important role in the regulation of cell
proliferation, invasion, metastasis, apoptosis, autophagy,
cell cycle, vascularization, and chemoresistance of TNBC
by regulating the expression of target genes involved in
cancer-related signaling pathways directly or indirectly.
The biological roles of circRNAs involved in TNBC cells
are depicted and summarized in Fig. 4.

CircRNAs modulate TNBC proliferation and tumor growth
Majority circRNAs identified in TNBC are character-
ized by oncogenic features. Specifically, circRPPH1, circ-
SEPT9, circGNBI, circPGAP3, circUBE2D2, circRADIS,
circAGFG1, circKIF4A, circPLK1, circUBAP2, circEP-
STI1, and circGFRA1 were upregulated in both TNBC
cells and tissues, and high expression of these circRNAs
was able to promote tumor cell proliferation both in vitro
and in vivo, and was associated with larger tumor sizes
and shorter survival times for TNBC patients [29, 46, 49,
51, 53, 54, 57, 59, 60, 63, 64, 78]. Similarly, circZEBI, cir-
cEIF3M, circHER2, hsa_circ_0131242, hsa_circ_0005320,
hsa_circ_ 069718, hsa_circ_0058514, and circTFCP2L1
were overexpressed in TNBC cells and tissues, and they
appeared to promote cell proliferation and tumor growth
of TNBC [55, 58, 62, 75, 79-82]. On the contrary, a few
circRNAs were identified to have tumor-suppressive
effects in TNBC. For example, circFBXW?7, circTADA2A-
E6, circITCH, and circAHNAKI were found to be down-
regulated in TNBC cells and tissues. Their expression
was negatively correlated with the tumor sizes and DFS
or OS of TNBC patients, and ectopic overexpression of
these circRNAs obviously inhibited cell proliferation and
tumor growth [48, 52, 56, 74]. Lisewise, circCDYL was
down-regulated in TNBC cells and inhibited prolifera-
tion of TNBC cells [61].

CircRNAs affect invasion and metastasis of TNBC

Certain circRNAs also play pivotal roles in promoting
the invasion and metastasis of TNBC. High expression
of circSEPTY, circGNBI, circAGFG1, circPGAP3, circK-
IF4A, circPLK1, circANKSIB, circlUBAP2, and ciRS-7
significantly contributed to the invasion and metastasis
of TNBC cells both in vitro and in vivo, and were cor-
related with advanced TNM stage and poor progno-
sis of TNBC patients [45, 47, 49, 51, 53, 54, 57, 59, 64].
Likewise, circRPPHI, hsa_circ 0131242, circEIF3M,
circHER2, circUBE2D2, circRADI1S8, hsa_circ_ 069718,
hsa_circ_0058514, and circTFCP2L1 also significantly
promoted the migration and invasion capability of
TNBC cells in vitro [55, 60, 62, 63, 75, 78, 79, 81, 82].
Conversely, the expression of circFBXW?7, circAHNAK]I,
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circRPPH1, circSEPT?Y, circZEB1, circGNBI1, circKIF4A,)
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Fig.4 Summary of roles of circRNAs on TNBC cells biological processes. circRNAs play multifaceted roles in TNBC initiation and development, which
can control cell proliferation, invasion, metastasis, apoptosis, cell cycle, and chemoresistance by orchestrating their downstream targets. Obviously,
certain circRNAs tends to affect TNBC progression by regulating multiple biological processes
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circTADA2A-E6, and circITCH appeared to be downreg-
ulated in TNBCs and was associated with advanced TNM
stage and poor survival for TNBC patients [48, 52, 56,
74]. Ectopic overexpression of circFBXW7, circAHNAKI,
and circITCH markedly inhibited the migration of TNBC
cells in vitro and obviously reduced the size and num-
ber of lung metastasis nodules in xenograft models of
TNBC [52, 56, 74]. Epithelial-to-mesenchymal transi-
tion (EMT) is a process characterized by the loss of the
polarity and adhesion capacity of epithelial cells, but an
increase in the mesenchymal traits [83],whcih is pivotal
for TNBC cells to metastasize [84]. Notably, circRPPH1I,
hsa_circ_069718, circKIF4A, and circPLK1 could increase
the expression of mesenchymal marker vimentin and
decrease the expression of epithelial marker E-cadherin,
thus contributing to EMT and metastasis [51, 54, 60, 81].
Wnt/B-catenin pathway is a key signaling cascade tightly
associated with cancer progression. Activation of the
Wnt/B-catenin pathway could promote tumor invasion
by the upregulation of factors regulating the EMT pro-
cesses [85]. We found that /sa_circ_069718 and circITCH
have opposite roles in regulating the Wnt/B-catenin
pathway. Hsa_circ 069718 activated the Wnt/B-catenin
pathway by upregulating -catenin, c-Myc, and cyclin D1
and thus promoted the invasion and metastasis of TNBC

cells, while circITCH played the opposite role [52, 81].
Besides, circANKSIB was proved to promote EMT via
increasing the expression of transcription factor USFI,
which could transcriptionally upregulate TGF-51 expres-
sion, resulting in activating TGF-B1/Smad signaling [47].
On the contrary, circTADA2A-E6 exerted a negative
effect on the regulation of metastasis by suppressing the
EMT process [48]. Above all, these circRNAs might act
as potential predictors and therapeutic targets for meta-
static TNBC.

CircRNAs regulate apoptosis of TNBC cells

CircSEPT9, circZEBI, circEIF3M, hsa_circ_0005320,
circRADIS8, circGFRA1, hsa_circ_ 0058514, circAGFGI,
circUBAP2, and circEPSTI1 have been proven to be
upregulated in TNBC cells and tissues, and associated
with decreased cell apoptosis rates of TNBC cells [29, 46,
49, 53,57, 58, 62, 78, 80, 82]. Silencing of circSEPT9, hsa_
circ_0005320, or circAGFGI leads to typical apoptotic
morphological characteristics in TNBC cells, such as
nuclear shrinkage as well as apoptotic body and nuclear
fragmentation [49, 57, 80]. Mechanically, knockdown of
circSEPTY, circZEBI, or circAGFGI could increase the
protein levels of the apoptotic markers (cleaved caspase
3 and Bax) while decrease the anti-apoptotic marker



Lyu et al. J Hematol Oncol (2021) 14:41

(Bcl-2) levels in TNBC cells [49, 57, 58]. Taken together,
these circRNAs may mediate the progress of TNBC by
suppressing tumor cell apoptosis.

Cell cycle/autophagy/angiogenesis-associated circRNA

in TNBC

It is well known that CCNE1 works by forming a com-
plex with CDK2, and the CCNE1-CDK2 complex is able
to pushing cell cycle from G1 to S phase, thereby regu-
lating tumor progression [86]. Hsa_circ_0058514 and
circAGFGI were proved significantly up-regulated in
TNBC cells and tissues and could promote the CCNEI
and CDK2 expression via acting as miRNAs sponge,
the knockdown of hsa_circ_ 0058514 and circAGFGI
resulted in G1/S phase cell cycle arrest [57, 82]. Simi-
larly, circEIF3M acts as a ceRNA to upregulate CCND1,
which mainly coordinates with cyclin-dependent kinase
4 (CDK4) to regulate cell cycle progression, downregula-
tion of circEIF3M led to G1 arrest [62]. Besides, silenc-
ing hsa_circ_0005320 led to higher percentages of TNBC
cells being arrested in the G1 phase, with lower percent-
ages of cells in the S phase, suggesting /sa_circ_0005320
also exerts functions in the regulation of the cell cycle
of TNBC cells [80]. Meanwhile, Yang et al. also discov-
ered that circAGFGI significantly promoted tumor
angiogenesis, suggesting circAGFGI also play important
roles in the regulation of tumor angiogenesis [57]. Cir-
c¢RPPH1 was proved to facilitates angiogenesis in TNBC
as well [60]. As for autophagy, the knockdown circSEPT9
in TNBC cells could increase the conversion of the
autophagy marker LC3 from LC3-I to LC3-II and upreg-
ulate the autophagy-related proteins ATGS5 and ATG7,
thereby inducing LC3II punctuation and accumulation of
autophagosomes [49].

CircRNAs regulate TNBC resistance to therapeutic drugs
Chemotherapy is a critical strategy for TNBC treatment,
which is usually administered as postoperative therapy
or preoperative neoadjuvant therapy. The most com-
monly used chemotherapeutics, including anthracyclines
(doxorubicin[DOX] and epirubicin), taxanes (PTX and
docetaxel), 5-fluorouracil (5-FU), and cyclophosphamide,
have achieved substantial advantages for TNBC patients,
but do not work out for every patient due to drug resist-
ance [4]. CircRNAs have been reported to play vital roles
in drug resistance, either by promoting or reversing
TNBC chemoresistance [87].

DOX-based chemotherapy is the most frequently
used treatment for TNBC [88]. Hsa_circ_ 0006528,
circKDMA4C, circUBE2D2, and circLARP4 were found
to be associated with DOX resistance in TNBC [63,
87, 89, 90]. Specifically, hsa_circ_0006528 was signifi-
cantly upregulated in DOX-resistant MDA-MB-231
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(MDA-MB-231/DOX) cells [87], mechanically by par-
ticipating in the circ_0006528/miR-7-5p/Rafl axis that
confers chemotherapeutic resistance in TNBC [91]. Like-
wise, circlUBE2D2 decreased DOX-induced TNBC cells
apoptosis by upregulating CDCA3, which is a trigger of
mitotic entry to withstand the DOX-induced apoptosis,
indicating that circlUBE2D2 promotes DOX resistance
of TNBC cell [63]. Instead, circLARP4 was downregu-
lated in TNBC cell lines, and ectopic overexpression of
circLARP4 can increase the sensitivity of MDA-MB-231
cell lines to DOX [89]. In addition, circKDM4C experes-
sion was significantly decreased in MDA-MB-231/DOX
cells and could attenuate DOX resistance by upregulat-
ing PBLD [90], which is a tumor suppesssor that could
inhibit tumor growth [92].

Chemoresistance against PTX is one of the major
issues related to treatment failure in TNBC patients.
However, the mechanism by which TNBC cells become
resistant to PTX remains unclear. Recently, three circR-
NAs, CircGFRAI, circABCB10 and circAMOTLI, were
identified as important factors that may be responsible
for the adverse resistance to PTX in TNBC cells. Spe-
cifically, CircGFRA1 and circABCBI0 were upregulated
in the PTX-resistant MDA-MB-231 (MDA-MB-231/
PTX) cells. CircGFRA1 knockdown can inhibit the resist-
ance of TNBC cells to PTX by reducing the expression
of TLR4, which has been found to be activated by pacli-
taxel to improve tumor cell survival and blocking TLR4
could significantly improve response to paclitaxel therapy
in BC [50, 93]. CircABCB10 contributed to PTX resist-
ance of TNBC cells through up-regulating of DUSP7,
which exerts its function by dephosphorylating MAPK
[94, 95]. Besides, circAMOTLI promoted the chemore-
sistance against PTX in TNBC cells via posttranscrip-
tional regulation of AKT and therefore led to increase the
anti-apoptotic gene BCL2 expression and inhibit the pro-
apoptotic gene BAX and BAK expression [96]].

Moreover, circ-CDRI1as was found to be associated
with 5-FU-resistant in MDA-MB-231 cells by inhibiting
miR-7 to upregulate CCNE1 [97]. Besides, circeMTOI,
which is usually downregulated in monastrol-resist-
ant MDA-MB-231 cells, can promote monastrol-
induced cytotoxicity by targeting Eg5 and sequestering
TRAF4 from binding to the Eg5 gene [67]. Interestingly,
circHER2, which encodes a novel protein HER2-103,
was proved to be expressed in some TNBC samples, and
HER2-103-positive TNBC cells were sensitive to Per-
tuzumab due to HER2-103 shared the same amino acid
sequences as the HER2 CR1 domian [75].

More and more circRNAs are being identified to be
associated with chemoresistance, however, our under-
stanting of the mechanistic role of circRNAs contrib-
uting to chemotherapeutic resistance is limited due to
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lack of deep mechanistic investigations and in vivo stud-
ies. Whether circRNAs could be a potential target for
overcoming TNBC chemoresistance requires further
exploration.

Clinical significance of circRNAs in TNBC

CircRNAs have also been proven to possess potential
values for diagnosis and prognosis of TNBC. As a result,
circRNAs have received considerable interest for their
potential as prognostic markers or therapeutic targets.

CircRNAs acts as diagnostic biomarkers for TNBC

There are six circRNAs have been currently identi-
fied to have diagnostic values in TNBC. Among them,
three circRNAs were upregulated and the other three
were downregulated in TNBC (Table 2). CircAHNAKI
was the first identified circRNA that significantly down-
regulated in TNBC tissues, therefore it can be used as a
diagnostic indicator for distinguishing TNBC from nor-
mal breast tissue [56]. Xu et al. [48] identified two dif-
ferentially expressed circTADA2As, circTADA2A-E6 and
circTADA2A-E5/E6, that were spliced from exon 6 or
exons 5 and 6 of the same TADA2A gene respectively, in
TNBC, and found that these two circRNAs were signifi-
cantly downregulated in TNBC and exhibited excellent

Table 2 Summary of diagnosis values of circRNAs in TNBC
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diagnostic values. Besides, circAGFGI, circRADIS8, and
circSEPT9 were found to be upregulated in TNBC and
also exhibited excellent ability in discriminating between
TNBC patients and normal individuals [49, 57, 78].

Association of circRNAs with clinicopathological features
of TNBC

Based on the current reported evidences, we summa-
rized the relationship between circRNAs expression and
the clinicopathological factors of TNBC in Additional
file 1: Tables S1 and S2. Accordingly, there was no signifi-
cant correlation between any circRNAs expression and
age or menopause status of TNBC patients (Additional
file 2: Figure 1). While many circRNAs expression was
significantly associated with other clinical parameters of
TNBC, including tumor size, lymph node metastasis, his-
tological grade, and TNM stage (Table 3). More impor-
tantly, the expression levels of circSEPTY, circGNBI,
hsa_circ_0131242, circPGAP3, circRADIS8, circAGFGI,
circKIF4A, circPLK1, circUBAP2, circ-ciRS-7, circEP-
STI1, and circGFRAI were positively correlated with the
tumor size [29, 45, 46, 49, 51, 53, 54, 57, 59, 60, 64, 78,
79], whereas circFBXW7, circAHNAKI, and circITCH
presented negative associations (Fig. 5a) [52, 56, 74].
CircAGFGI and circGFRA1 were positively related to

CircRNAs TNBC samples Normal Expression Method Sample type AUC Sensitivity Specificity References
samples in TNBC
circSEPT9 60 60 Up RT-gPCR  Tissue 0.711 0.633 0.75 [49]
circRAD18 31 31 Up RT-gPCR  Tissue 0.752 NR NR [78]
CircAGFG1 40 40 Up RT-gPCR  Tissue 0.767 NR NR [571
CircTADA2A-E6 115 16 Down RT-gPCR  Tissue 08554 NR NR [48]
circTADA2A-E5/E6 115 16 Down RT-gPCR  Tissue 09366 NR NR [48]
circAHNAK1 20 20 Down RT-gPCR  Tissue 0.72 NR NR [56]

TNBC triple-negative breast cancer, NR not report, gRT-PCR quantitative real-time PCR, AUC area under the curve

Table 3 Summary of circRNAs related to clinicopathological features of TNBC

Clinicopathological factors

Correlation of circRNAs expression with clinicopathological factors in TNBC

Positive Negative

Tumor size

Histological grade
LN metastasis

TNM stage

CircSEPT9, circGNB1, hsa_circ_0131242,circPGAP3,
circRAD18, circAGFG1, circKIF4A, circPLKT, circUBAP2, circ-
ciRS-7, circEPSTIT, circGFRA1

circAGFG1, circGFRAT NR

circRPPH1, circSEPT9, circPGAP3, circUBE2D?2, circAGFG1,
circKIF4A, circPLK1, circANKS1B, circUBAP2, circ-ciRS-7,
circePSTI1, circGFRA1

CircSEPTOY, circGNB1, hsa_circ_0131242, circPGAP3,
circUBE2D2, circRAD18, hsa_circ_069718, circKIF4A,
circPLK1,circANKS1B, circUBAP2, circEPSTIT

circFBXW?7, circAHNAKT, circITCH

circUSP42, circFBXW7,circTADA2A-E6,circAHNAKT, circITCH

circUSP42, circTADA2A-E6,circAHNAKT circI TCH

TNBC triple-negative breast cancer, NR not report, LN lymph node
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gjdy pvalue Odds ratio
‘Yehui Zhou 2020 - circRPPH1 0.409 3.333(0.515-21.584) ———
Xiaying Zheng 2020 - circSEPT9 - Cohort 1 0.002 6.000(1.890-19.043) —a—
Xiaying Zheng 2020 - circSEPT9 - Cohort 2 0.009 3.483(1.338-9.072) —a—
Peng Liu 2020 - circGNB1 0.001 4.735(2.184-10.264) —a—
Yueting Li 2020 - hsa_circ_0131242 <0.001 5.296(1.993-14.074) —a—
Dabao He 2020 - circ-PGAP3 0.008 3.345(1.346-8.312) —a—
Yutian Zou 2019 - circRAD18 0.002 4.293(1.675-11.001) —a—
Yutian Zou 2019* - circRAD18 0.001 4.523(1.844-11.093) ——
Rui Yang 2019 - circAGFG1 - Cohort 1 0.027 4.333(1.150-16.323) —a—
Rui Yang 2019 - circAGFG1 - Cohort 2 0.152 2.000(0.769-5.198) —a—
Feng Ye 2019 - circFBXW7 0.014 0.593(0.390-0.900) [l
Weikai Xiao 2019*- circAHNAK1 0.045 0.239(0.064-0.900) —
S. T. WANG 2019 - circITCH 0.016 0.354(0.150-0.831) —a—
Qian Wang 2019 - circTFCP2L1 0.154 3.545(0.592-21.245) i
Hailin Tang 2019 - circKIF4A <0.001 3.247(1.699-6.207) —.—
YYanan Kong 2019 - circPLK1 <0.001 3.984(2.028-7.829) —a—
Kaixuan Zeng 2018 - circANKS1B 0.180 0.626(0.314-1.245) —a—
Shengting Wang 2018 - circUBAP2 0.003 0.240(0.092-0.627) —a—
Meixiang Sang 2018* - circ-ciRS-7 0.005 3.935(1.452-10.666) —
Bo Chen 2018 - circEPSTI1 <0.001 6.536(2.825-15.123) —a—
Rongfang He 2017 - circGFRA1 0.029 1.884(1.062-3.340) =
T T
0.10 1.0 100
c OR
Study pvalue Odds ratio
Yehui Zhou 2020 - circRPPH1 0.025 9.333(1.193-72.991) —a—
Xiaying Zheng 2020 - circSEPT9 0.028 3.500(1.112-11.017) —a—
Jinling Yu 2020 - circUSP42 0.005 0.063(0.006-0.604) —a—
Peng Liu 2020 - circGNB1 0.072 1.652(0.954-2.860) e
Dabao He 2020 - circ-PGAP3 <0.001 6.496(2.369-17.815) —a—
Yutian Zou 2019 - circRAD18 0.109 1.779(0.878-3.604) -
Feng Ye 2019 - circFBXW7 0.004 0.578(0.398-0.839) H
Rui Yang 2019 - circAGFG1 + Cohort 1 0.025 4.500(1.166-17.373) —a—
Rui Yang 2019 - circAGFG1 + Cohort 2 0.260 1.667(0.684-4.063) [ap_aul
Weikai Xiao 2019 - circAHNAK1 0.001 0.274(0.135-0.560) -
S. T. WANG 2019 - circITCH 0.008 0.315(0.132-0.753) -
Hailin Tang 2019 - circKIF4A <0.001 2.712(1.597-4.606) HH
Yanan Kong 2019 - circPLK1 <0.001 2.620(1.543-4.449) HH
Kaixuan Zeng 2018 - circANKS1B 0.004 2.510(1.336-4.714) HH
Shengting Wang 2018 - circUBAP2 0.002 0.221(0.081-0.601) —a—
Meixiang Sang 2018 - circ-ciRS-7 0.028 2.155(1.079-4.306) -
Bo Chen 2018 - GircEPSTI1 0.004 2.197(1.276-3.785) HH
Rongfang He 2017 - circGFRA1 <0.001 16.131(8.214-31.678) [ o]
[ e
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1411 versus I; OR odds ratio, C confidence interval

Fig. 5 Forest plots of the associations between the expression of circRNAs and a tumor sizes (>2 vs < 2), b histological grade (Il vs [411), ¢ lymph
node metastasis (positive vs negative), d TNM stage (Il + 1V vs |+ 1) of TNBC. Each square indicates a study. * indicates > 5 versus <5, # indicates

Study pvalue Odds ratio
Xiaying Zheng 2020 - circSEPTY - Cohort 1 0.253 2.024(0.600-6.829) -
Xiaying Zheng 2020 - circSEPT9 - Cohort 2 0.501 1.353(0.560-3.267) i
Jinling Yu 2020 - circUSP42 0.456 1.750(0.400-7.664) —a—
Yutian Zou 2019 - circRAD18 0.069 1.955(0.946-4.036) ——
Rui Yang 2019 - circAGFG1 - Cohort 1 0.197 2.333(0.638-8.538) —a—
Rui Yang 2019 - circAGFG1 - Cohort 2 0.004 3.857(1.526-9.750) —a—
S. T. WANG 2019 - circITCH 0.267 0.536(0.212-1.356) —a
Qian Wang 2019 - circTFCP2L1 0.332 0.500(0.098-2.540) —a—
Kaixuan Zeng 2018 - circANKS 1B 0.158 2.039(0.967-4.300) ——
Shengting Wang 2018 - circUBAP2 <0.001 6.460(2.088-19.986) —a—
Meixiang Sang 2018 - circ-ciRS-7 0.844 1.071(0.540-2.123)
Bo Chen 2018 - circEPSTI1 0.640 1.148(0.668-1.971)
Rongfang He 2017 - circGFRA1 0.036 1.728(1.014-2.943)
T 1
0.10 1.0 50 150
d OR
Study pvalue Odds ratio
‘Yehui Zhou 2020 - circRPPH1 0.068 6.000(0.812-44.351) ——
Xiaying Zheng 2020" - circSEPT9 - Cohort 1 0.001 7.429(2.078-26.553) —a—
Xiaying Zheng 2020" - circSEPT9 - Cohort 2 0.002 5.935(1.744-20.200) —a—
Jinling Yu 2020 - circUSP42 0.032 1.364(1.005-1.850) -
Peng Liu 2020 - circGNB1 0.007 2.368(1.248-4.493) .
Yueting Li 2020 - hsa_circ_0131242 <0.001 6.000(2.332-15.436) —a—
Dabao He 2020 - circ-PGAP3 0.002 5.472(1.800-16.637) —a—
Yutian Zou 2019 - circRAD18 0.010 2.909(1.274-6.642) —a—
Feng Ye 2019 - circFBXW7 0.302 0.818(0.558-1.198) HH
Rui Yang 2019 - circAGFG1 - Cohort 1 0.212 3.000(0.507-17.740) ——a—
Rui Yang 2019 - circAGFG1 - Cohort 2 0.329 1.615(0.614-4.247) -
Weikai Xiao 2019 - circAHNAK1 <0.001 0.107(0.035-0.331) —a—
S. T. WANG 2019 - circITCH 0.002 0.163(0.054-0.487) —a—
Qian Wang 2019 - circTFCP2L1 0.031 7.286(1.173-45.255) —a—
Hailin Tang 2019 - circKIF4A 0.012 2.180(1.174-4.047) -
‘Yanan Kong 2019 - circPLK1 0.010 2.231(1.201-4.143) .
Kaixuan Zeng 2018 - circANKS1B 0.013 2.826(1.431-5.580) .
Shengting Wang 2018 - circUBAP2 0.005 4.714(1.611-13.796) —a—
Bo Chen 2018 - circEPSTI1 0.008 2.298(1.229-4.299) -
Rongfang He 2017 - circGFRA1 <0.001 8.550(4.060-18.007) .
T T
0.10 1.0 100 50.0
OR

the histological grade of TNBC (Fig. 5b) [29, 57]. High
expressions of circRPPH]1, circSEPTY, circAGFG1, circP-
GAP3, circUBE2D2, circKIF4A, circPLKI, circANKSIB,
circUBAP2, circ-ciRS-7, circEPSTI1, and circGFRAI
were associated with positive lymph node metastasis
[29, 45-47, 51, 53, 54, 57, 60, 63, 64], while low expres-
sions of circlSP42, circFBXW7, circTADA2A-E6, cir-
¢cAHNAKI, and circITCH were associated with positive
lymph node metastasis in TNBC (Fig. 5¢) [48, 52, 56, 74].
Besides, increased expression of circSEPT9, circGNBI,
hsa_circ_0131242, circPGAP3, circlUBE2D2, circRADIS,
hsa_circ_069718, circKIF4A, circPLKI1, circANKSIB,
circUBAP2, and circEPSTII in TNBC suggested
advanced TNM stage [46, 47, 49, 51, 53, 54, 59, 63, 64,
78, 79, 81], whereas decreased expression of circlUSP42,

circTADA2A-E6, circAHNAKI, and circITCH in TNBC
indicated advanced TNM stage (Fig. 5d) [48, 52, 56].

CircRNAs act as prognostic biomarkers for BC

21 circRNAs have been reported to have the prognos-
tic values for TNBC patients (Table 4). Specifically,
high expression of circSEPTY9, circGNBI1, circRADIS,
circAGFGI, and circANKSIB and low expression of
circFBXW7 were related to worse survival of TNBC
and could be independent prognostic factors for TNBC
patients [47, 49, 57, 59, 74, 78], while circTADA2A-E6
was frequently downreglated in TNBC and whose down-
regulation were associated with worse survival (Fig. 6).
High expression of 15 circRNAs (circSEPT9, circGNBI,
hsa_circ_0131242, circHER2, circPGAP3, circUBE2D2,
circRADI18, circAGFG1, hsa_circ_ 069718, circKIF4A,
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Study pvalue
Xiaying Zheng 2020 - circSEPT9 0.012
Peng Liu 2020 - circGNB1 0.031
Yutian Zou 2019 - circRAD18 0.041
Rui Yang 2019 - circAGFG1 0.001
Feng Ye 2019 - circFBXW7 0.001
Jian Zhen Xu 2019 - circTADA2A-E6 0.023
Kaixuan Zeng 2018 - circANKS1B 0.008
Cl confidence interval

3.042(1.278-7.240)

2.148(1.070-4.310)

2.045(1.010-4.143)

6.072(2.614-14.105)

0.215(0.119-0.387)

0.088(0.011-0.714)

3.290(1.750-8.230)

Fig. 6 Forest plots of the associations between the expression of circRNAs and TNBC overall survival. Each square indicates a study. HR hazard ratio,

Hazard ratio

HEH
HEH
HEH

HEH

HElH

[ T 1
0.10 1.0 50 15.0
HR

circPLK1, circANKSIB, circUBAP2, circEPSTII, and
circGFRA1) was related to worse OS [46, 47, 49, 51, 53,
54,57, 59, 63, 64, 75, 78, 79, 81], indicating that they have
carcinogenic effects in TNBC. Increased expression of
the 5 circRNASs (circUSP42, circFBXW7, circTADA2A-E6,
circAHNAK1, and circITCH) was associated with better
OS for TNBC patients [48, 52, 56, 74, 98], suggesting that
they serve as tumor suppressors. In terms of DFS, ele-
vated expression of 7 circRNAs (circGNBI, circPGAP3,
circTFCP2L1, circKIF4A, circPLK1, circEPSTII, and
circGFRA1) showed reduced DFS [29, 46, 51, 54, 55, 59,
64], while high circlSP42, circTADA2A-E6, circFBXW?7,
and circAHNAKI expression predicted better DFS [48,
56, 74, 98], implying that they are related to the recur-
rence or progression of TNBC.

Conclusions and perspective

TNBC represents a more malignant and aggressive sub-
type of BC that lacks of effective targeted therapies, and
the specific pathogenesis of TNBC is still not fully under-
stood. CircRNAs, previously thought to be the products
of RNA splicing errors, are now regarded as an emerg-
ing vital player with intriguing functions during vari-
ous physiological and pathophysiological processes. As

discussed in this review, the exact mechanisms of circR-
NAs maturation have not been fully elucidated, while the
dysregulation of circRNAs is believed to be one of the
important mechanisms leading to the development and
progression of TNBC. As regulators of gene expression,
circRNAs are involved in various biological processes of
TNBC, including cell proliferation, apoptosis, cell cycle,
angiogenesis, metastasis and chemoresistance, mak-
ing them potential promising biomarkers for TNBC in
regarding to diagnosis, prognosis or treatment.

Besides, there are several gaps in the research field of
circRNA in TNBC, which need to be further fulfilled in
the future. CircRNAs are always maintained at a rela-
tively stable state in cells and they live long in the extra-
cellular environment owing to their unique structures
that are resistant to exonuclease RNase Rand [32, 99],
identification of dysregulated circRNAs in body flu-
ids, therefore, may be more beneficial for the diagnosis
and prognosis of TNBC. Currently, circRNAs in clini-
cal samples, such as plasma, serum, or exosomes have
been found to be serve as significant biomarkers in
tumor. For example, Wang et al. have identified and val-
idated a number of dysregulated circRNAs in exosomes
from BC patients [100] and circUBE2D2 was found to
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significantly load in exosomes isolated from tamoxifen-
resistant cells, which reinforced tamoxifen resistance
in BC [101]. Nevertheless, there is no literature report-
ing the circulating circRNAs (from blood, urine, saliva,
etc.) in TNBC, which should be pursued in future
researches. Additionally, the well-known mechanism of
circRNAs exerting functions in biological or pathologi-
cal processes is through ceRNA to target downstream
genes, while other potent molecular mechanisms of
circRNAs involved in TNBC progression is limited
and needs further investigation. Moreover, other unex-
cavated circRNAs related to TNBC development and
progression and elucidation of their corresponding
functions are also awaiting for discovery.

Overall, this review gives a systematically summary of
the biogenesis, regulatory mechanisms, and biological
functions of circRNAs in TNBC, and lists almost all of
the circRNAs that dysregulated in TNBC and discusses
their significant values for TNBC in regarding to diagno-
sis, prognosis and chemoresistance, which provides great
guiding significance for future researches of circRNAs
in TNBC. A better understanding of circRNAs in TNBC
may contribute to the development of more reliable diag-
nosis and treatment straategies for TNBC.
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