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Abstract

The treatment paradigm of non-small cell lung cancer (NSCLC) has evolved into oncogene-directed precision
medicine. Identifying actionable genomic alterations is the initial step towards precision medicine. An important
scientific progress in molecular profiling of NSCLC over the past decade is the shift from the traditional piecemeal
fashion to massively parallel sequencing with the use of next-generation sequencing (NGS). Another technical
advance is the development of liquid biopsy with great potential in providing a dynamic and comprehensive
genomic profiling of NSCLC in a minimally invasive manner. The integration of NGS with liquid biopsy has been
demonstrated to play emerging roles in genomic profiling of NSCLC by increasing evidences. This review
summarized the potential applications of NGS-based liquid biopsy in the diagnosis and treatment of NSCLC
including identifying actionable genomic alterations, tracking spatiotemporal tumor evolution, dynamically
monitoring response and resistance to targeted therapies, and diagnostic value in early-stage NSCLC, and discussed
emerging challenges to overcome in order to facilitate clinical translation in future.
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Background
In 1976, the relationship between genetic instability and
tumorigenesis was proposed by Nowell [1]. Later on,
progress in cancer genomics has further strengthened
the notion that cancer is driven by various types of gen-
omic alterations [2]. Global advances in sequencing
techniques have refined an evolving genomic landscape
of cancer. The technical revolution began with the era of
first-generation sequencing, in which the Human
Genome Project was an outstanding landmark by depict-
ing the first 99.7% complete human genome with about
22,000 genes involved [3–5]. With the use of capillary-
based instrument, methodologies of first-generation
sequencing offered important discoveries of candidate
genes [6–8], meanwhile raising concerns on cost-
effectiveness and limitations in the scope of sequencing.
Consequently, the sequencing pattern gradually devel-
oped into genomic scale fashion during the second half
of last decade. Starting in 2005, next-generation sequen-
cing (NGS) enabled a comprehensive profiling of cancer

genome with unprecedented depth and breadth [2].
Collaborative projects such as The Cancer Genome Atlas
(TCGA) and the International Cancer Genome Consortium
(ICGC) have characterized pan-cancer genetic abnormal-
ities using NGS, cumulating knowledge of cancer genomics
to accelerate discoveries of cancer causes and to improve
diagnosis and treatment [9, 10]. Besides, emerging technical
advances have made the cost of NGS to dramatically
decrease and reach the point where an entire human
genome could be sequenced for less than $1000 [11],
increasing its accessibility to researchers.
NGS has three major advantages over the first-

generation Sanger sequencing. The most outstanding
one is its high-throughput, making testing of thousands
of genes or even the whole genome possible. Addition-
ally, NGS demonstrates excellent testing performance
with compatibility of low-input DNA. Lastly, NGS
appears to be more cost-effective in massively parallel
sequencing [12, 13]. These abovementioned advantages
have made NGS a promising testing for NSCLC, where
multiple agents targeting various actionable genomic
alterations are available [14–22]. Meanwhile, challenges
of regulatory issues, assay validation, proficiency testing,
and quality control still need to be overcome [23]. With

* Correspondence: syylwu@live.cn
Guangdong Lung Cancer Institute, Guangdong General Hospital, Guangdong
Academy of Medical Sciences, 106 Zhongshan 2nd Road, Guangzhou,
Guangdong 510080, People’s Republic of China

© The Author(s). 2017 Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and
reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to
the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver
(http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.

Zhang et al. Journal of Hematology & Oncology  (2017) 10:167 
DOI 10.1186/s13045-017-0536-6

http://crossmark.crossref.org/dialog/?doi=10.1186/s13045-017-0536-6&domain=pdf
mailto:syylwu@live.cn
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/


more and more NGS platforms developed,
standardization of reports from various test platforms is
also urgently warranted.
Liquid biopsy is another revolutionary advance in

genomic profiling of NSCLC. Currently, there are three
types of circulating biomarkers that can be detected in
liquid biopsy: circulating tumor DNA (ctDNA), circulat-
ing tumor cells (CTCs), and exosomes [24]. Among
them, ctDNA is a potential surrogate for the entire
tumor genome, and it is often referred to as “liquid bi-
opsy” [25]. Liquid biopsy has advantages over traditional
tissue biopsy in that the procedure is minimally invasive,
is able to reflect a comprehensive genome landscape
contributed by multiple tumor sites, and has the poten-
tial in serial monitoring [26]. Liquid biopsy demon-
strated promising reference value in diagnosis and
treatment of advanced NSCLC. Meanwhile, issues
remain, including varying sensitivities and specificities
between different platforms and lack of standardization
of techniques and downstream processing [27].
The integration of NGS with liquid biopsy seems like

the grafting in agriculture, which maximizes overall
advantages (Fig. 1). NGS-based liquid biopsy might
facilitate a minimally invasive and comprehensive genomic
profiling of NSCLC that overcomes spatial heterogeneity
arising from tissue biopsy and limitations in genomic infor-
mation from candidate gene characterization. There is an
increasing number of studies demonstrating the utility of
NGS-based liquid biopsy in both advanced and early-stage
NSCLC. Recent large-scale genomic profiling of advanced
NSCLC by NGS-based ctDNA assays have demonstrated
high concordance with matched tissue [28, 29], but it is
noteworthy that the accuracy of this test in resectable stage

NSCLC have reported to be much lower ranging from 23.3
to 50.4% [30, 31], possibly due to the low concentrations of
ctDNA in early-stage patients. Along with efforts in
improving the test sensitivity and investigations in diagnosis
and monitoring NSCLC come practical challenges. This
review summarizes the applications and emerging chal-
lenges of NGS-based liquid biopsy in patients with NSCLC.

Identifying actionable genomic alterations in
patients with advanced NSCLC
The National Comprehensive Cancer Network guideline of
NSCLC recommended testing for seven biomarkers amen-
able to targeted therapies, including epidermal growth factor
receptor (EGFR) mutation, fusions in anaplastic lymphoma
kinase (ALK), c-ros oncogene 1 receptor (ROS1) and RET
proto-oncogene (RET), mesenchymal–epithelial transition
(MET) amplification or MET exon 14 skipping mutation,
human epidermal growth factor receptor-2 (HER2) muta-
tion, and BRAF V600E mutation, indicating the necessity of
multiplex sequencing. NGS-based ctDNA assay has demon-
strated the feasibility of identifying multiple actionable
genomic alterations with overall concordance rates with
matched tissue ranging from 60 to 86% across various plat-
forms in patients with advanced lung cancer [32–37]. A
bias-corrected targeted NGS detected a broad range of
actionable genomic alterations in the plasma, including
ALK, ROS1, and RET rearrangements, HER2 insertions, and
MET amplification in advanced NSCLC, with 100% specifi-
city [34]. Another study using a semi-conductor-based NGS
platform identified multiple biomarkers in plasma ctDNA
including EGFR, KRAS, PIK3CA, and TP53 with an overall
concordance rate of 76% with paired tissue DNA [32]. A
proof-of-concept study from BioCAST/IFCT-1002 also
reported the utility of NGS-based ctDNA assay to screen
clinically relevant biomarkers including EGFR, KRAS, BRAF,
ERBB2, and PI3KCA with an overall sensitivity of 58% and
estimated specificity of 86% [33]. Notably, NGS-based
ctDNA assay has demonstrated impressive performance of
genotyping in cases of incomplete or negative tissue geno-
typing [29, 33, 34, 38–40]. In a recent study evaluating the
utility of ctDNA analysis by digital NGS of over 8000
advanced NSCLC, additional actionable biomarkers such as
EGFR mutations, ALK and ROS fusion, BRAF V600E muta-
tion, and Met 14 skipping mutation were identified in 29%
of unvaluable or under genotyped tissue cases [29]. Add-
itionally, these evidences also suggested that NGS-based
ctDNA assay might appear as a cost-effective approach to
offer patients with advanced NSCLC more opportunities to
be enrolled in innovative clinical studies involving multiple
biomarkers analysis such as umbrella and cluster trials.
Among the abovementioned actionable genomic alter-

ations, the performance of NGS in discovering druggable
mutations is of clinical significance. Regarding EGFR
testing, NGS-based ctDNA assay showed preferable

Fig. 1 Integration of NGS and liquid biopsy maximizes overall advantages
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sensitivity and specificity in detecting EGFR exon 19
deletion, exon 21 L858R mutation, and exon 20 T790M
mutation. In TIGER-X study, a short footprint mutation
enrichment NGS platform was used to interrogate EGFR
activating mutations and T790M mutation in the urine
and plasma samples from patients [39]. With tissue as a
reference, the sensitivity of EGFR mutation detection in
plasma was 87, 100, and 93% for exon 19 deletion, exon
21 L858R mutation, and exon 20 T790M mutation,
respectively. The specificity of plasma EGFR mutation
detection was 96% for exon 19 deletion, 100% for exon
21 L858R mutation, and 94% for exon 20 T790M muta-
tion. The sensitivity of urine EGFR mutation detection
in specimens that met the recommended volume of
90–100 ml also reached 83, 80, and 93% for exon 19
deletion, exon 21 L858R, and exon 20 T790M muta-
tion, respectively. In a prospective study enrolling 288
NSCLC patients, the diagnostic specificity of NGS for
exon 19 deletions and exon 21L858R mutation in the
plasma were 98 and 94.1%, respectively, indicating a
positive ctDNA result might enable direct recommen-
dation of EGFR TKIs. The overall testing sensitivity
was 72.7% in stage IIIB–IV patients [41]. Another
issue that deserves to be addressed is the clinical
accuracy of plasma EGFR assays as compared to
matched tissue biopsies. Evidences from current
largest data enrolling 229 advanced NSCLC patients
with matched NGS-based ctDNA and tissue tests
demonstrated that the positive predictive value (PPV)
of ctDNA sequencing was 100% for EGFR exon 21
L858R mutation, 98% for EGFR exon 19 deletion, and
27% for EGFR exon 20 T790M mutation, suggesting
latter acquisition of this resistance mutation [42]. The
difference in plasma test accuracy between EGFR
T790M mutation and EGFR-activating mutations was
also reported in AURA3 study. Paired cobas plasma
and tissue tests also demonstrated that the positive
percent agreement of cobas plasma test with the
cobas tissue test for EGFR T790M mutation detection
was 51%, lower than that for EGFR activating muta-
tions (exon 19 deletion, 82%; exon 21 L858R muta-
tion, 68%) [43]. The abovementioned data highlighted
the necessity of routine tissue biopsy in cases of
EGFR T790M mutation-negative plasma assay.
Besides, the utility of NGS in plasma ALK testing was

also demonstrated in several studies [34, 36, 38, 44].
Comparing two studies which performed non-invasive
genotyping of ALK fusion by capture-based NGS, the
test accuracy ranged from 68.8 to 91.7% for advanced
NSCLC [38, 44]. Additionally, rare ALK fusion types,
such as FAM179A-ALK and COL25A1-ALK, and ALK
mutations including ALK L1152R, ALK I1171T, and
ALK L1196M were also identified. With the advantages
of simultaneous screening rare or even unknown ALK

fusion patterns as well as somatic mutations, NGS-based
ctDNA assay might not only provide a more compre-
hensive landscape of advanced ALK-positive NSCLC,
but also offer more opportunities of ALK inhibitors to
this subset of patients.
Of these druggable mutations, one important issue is

whether the NGS ctDNA testing is comparable or even
superior to routine methodologies. Evidence from mul-
tiple studies of EGFR mutation detection has demon-
strated that the testing performance of NGS platforms is
relatively comparable to polymerase chain reaction
(PCR)-based and cobas platforms [45, 46]. Direct
comparison was reported in AURA II study where cobas
(a FDA-approved plasma EGFR test) and NGS were
involved in plasma EGFR T790M testing. As compared
to MiSeq NGS, the sensitivity and specificity of cobas
was 91.5 and 91.1%, respectively. The concordance rate
between the two methods was 91.3% [45]. Such perform-
ance was also comparable to that of BEAMING and
digital droplet PCR (ddPCR) as reported in AURA I
study. As compared to ARMS, the sensitivity and specifi-
city ranged from 22.1 to 75% and 85 to 100%, respect-
ively, in various studies [47]. NGS seemed to exhibit
equivalent or even superior performance in plasma
EGFR testing.
The biggest challenge facing NGS-based liquid

biopsy is whether discoveries are really actionable in
clinical practice. In case that multiple actionable gen-
omic alterations are identified, how to distinguish the
driver genes to be targeted from other passengers?
Technically, this question might not be easily solved.
With the background rates of mutation greatly vary
among different patients and regions of the genome,
NGS could not reliably indicate the driver genes from
a number of passengers [48]. Besides, there is no uni-
versal consensus on the valid cut-off point of these
actionable mutations being clinically relevant to take
action. Several studies have reported cases with ultra-
low mutation frequency in ctDNA [29, 33, 35]. NGS-
based ctDNA assay of patients with IIIb/IV NSCLC
showed that 46% of somatic mutations detected in
ctDNA were observed at a frequency below 1% [35].
Whether targeting these actionable alterations with
ultra-low frequency is clinically meaningful remains
unknown. Thus, future studies deserve to further distin-
guish driver genetic alterations and define the valid cut-off
point with clinical significance to make discoveries
from NGS-based ctDNA assay becoming actionable in
clinical practice. The APPLE Trial (NCT02856893), a
randomized, three-arm, phase II study evaluating the
feasibility and activity of osimertinib treatment on posi-
tive plasma EGFR T790M mutation in EGFR-mutant
NSCLC patients might hopefully provide further evi-
dence on this issue [49].
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Discrepancies between liquid and tissue biopsy seem
to be another challenge that hinders clinical translation.
Both tissue-positive ctDNA-negative, and ctDNA-positive
tissue-negative cases have been reported in several studies
[33, 34, 38, 39]. Therefore, NGS-based liquid biopsy ap-
pears to complement the gold standard tissue biopsy. Inte-
grating tissue testing and NGS-based liquid biopsy might
be a promising strategy in molecular profiling of advanced
NSCLC in the future. Meanwhile, due to the differences
in NGS platforms and tissue assays across published stud-
ies, further evidences are needed to define the relationship
of NGS-based ctDNA assays and tissue tests to facilitate
clinical translation. Results from an ongoing observational
study (NCT02620527) which compares the concordance
between ctDNA assay and matched tissue test by
FoundationOne is worth the expectation [50].

Dynamic monitoring of response and resistance
to targeted therapies
Firstly, the value of NGS-based ctDNA analysis in predict-
ing responses to targeted therapies has been demon-
strated. Quantification of circulating specific tumor genes
by NGS has been shown to be potential surrogate markers
for patients under targeted treatments. Several studies
suggested that the extent to which plasma and urine
EGFR mutation levels drop after initiation of EGFR TKI
might predict depth of response [39, 51, 52]. Of note, the
ctDNA responses correlated well with radiologic
responses in radiologic good responders, whereas correl-
ation was poor in non-responders to EGFR TKIs [53]. In
addition to quantification of specific tumor genes, the
changes in molecular tumor load (MTL) detected by NGS
correlated with or predicted all (95% CI, 82.0–99.8%)
radiological and/or clinical responses except for cases
without any genomic alteration detected [54].
Secondly, NGS-based ctDNA assay has also been

reported to provide prognostic implications for patients
with advanced NSCLC. ctDNA positive at diagnosis was
suggested to be an independent marker of poor progno-
sis, with a median overall survival (OS) of 13.6 months
versus 21.5 months (adjusted hazard ratio [HR] 1.82,
p = 0.045). In addition, ctDNA clearance at first evalu-
ation was also correlated with OS independently of
Response Evaluation Criteria in Solid Tumors (RECIST)
(HR 3.27, p < 0.001) [55]. Similarly, another prospective
study further found that a cell-free DNA (cfDNA)
concentration > 3 ng/l was associated with a decreased
OS (median, 24 vs. 46 months; log-rank, p < 0.01) [36].
Thirdly, NGS-based ctDNA assay has also been

successfully used for dynamically monitoring actionable
genomic alterations [56–58]. Plasma EGFR monitoring
by deep sequencing demonstrated that the mutation
detection rate of EGFR exon 19 deletion/exon 21 L858R
mutation was high at the initiation of EGFR-TKI

(p = 0.001), suppressed during treatment course before
disease progression, and elevated after the onset of dis-
ease progression (p = 0.023). The mutation detection
rate of EGFR T790M was low until the onset of disease
progression and elevated thereafter (p = 0.01) [56]. Another
example of the ability of NGS-based ctDNA assay to
dynamically monitor actionable genomic alternations was
demonstrated in an ALK-positive case. The MAF of ALK
fusion was detected at 0.91% pre-treatment and dropped to
0.41% at progression along with the emergence of F1174C
which was detected at 1.0% [58].
Lastly, NGS-based ctDNA assay has refined a more

heterogeneous resistance landscape to targeted therapies.
Plasma NGS at pretreatment of rociletinib demonstrated
a much more heterogeneous resistance scenario to first-
line EGFR TKIs [59]. Concurrent with EGFR T790M
mutation, multiple additional resistance mechanisms
were observed in 46% of patients after failure from prior
EGFR inhibitors, much higher than 5–15% in previous
reports [60–63]. NGS-based ctDNA assay has also
discovered novel resistance mechanisms to third-
generation EGFR inhibitors. A well-known example is
the discovery of EGFR C797S mutation, which mediates
to osimertinib [64–67]. Intriguingly, NGS ctDNA analysis
not only identified EGFR C797S mutation at disease pro-
gression, but also further demonstrated different genomic
presentations of acquired EGFR C797S mutation, in cis or
in trans with EGFR T790M mutation. In addition to the
same DNA alteration seen in the tumor samples, plasma
ctDNA analysis identified a second DNA alteration encod-
ing the C797S mutation. Other novel resistance mecha-
nisms to third-generation EGFR inhibitors such EGFR
C797G mutation and EGFR L798I mutation have also
been identified by NGS of pleural effusion and ctDNA,
respectively [59, 68]. NGS-based ctDNA assay also
unveiled a more comprehensive resistance landscape of
ALK inhibitor crizotinib including F1174C/V, G1202R,
L1198F, I1171T, and L1196M and potential novel resist-
ance mechanisms of co-occurring SNVs in other genes
that are absent in treatment-naïve patients [58].
The major hurdle in monitoring resistances is to iden-

tify dominant resistance mechanisms to guide what clin-
ical action to be taken. Similar to tissue-based NGS
genomic profiling, on condition that NGS-based ctDNA
assay demonstrates a resistant landscape with two or
more actionable genomic alterations, how should clini-
cians take action? One potential approach is to systemat-
ically use cellular characterization, clonal analysis, and
protein structure to further validate discoveries from
NGS-based ctDNA assay and moreover to suggest
potential targeted agents. The feasibility of similar strat-
egy has been demonstrated in a case report of advanced
ALK-positive NSCLC. Systematic use of multiple assays
not only validated that ALK C1156Y-L1198F mutations
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induced resistance to lorlatinib but also suggested the
regained sensitivity to crizotinib, providing evidence on
recalling crizotinib as a subsequent treatment to over-
come lorlatinib resistance [69].
Another emerging challenge is how to refine treatment

strategy according to ctDNA mutational dynamics. An
innovative strategy has been proposed in a trial which
plans to monitor tumor resistance by ctDNA and tailor
treatment based on abundance of EGFR T790M mutation
in plasma [70]. When the levels of EGFR T790M mutation
reduce, they will switch to a first-generation EGFR inhibi-
tor, and when EGFR T790M mutation levels rise, the
researchers will switch back to osimertinib. Collectively,
endeavors to investigate novel treatment strategies based
on ctDNA dynamics is promising; however, present evi-
dence are not yet sufficient to transform clinical practice.

Diagnostic value in early-stage NSCLC
The potential of NGS-based ctDNA in screening for
early-stage NSCLC has been demonstrated in several
studies. The median yield of cfDNAs was demonstrated
to be significantly higher in patients with early-stage
lung adenocarcinomas, as compared to healthy controls
(4.9 vs. 2.32 ng, p = 0.003). In addition, Log2 ratio-based
CNV analysis demonstrated subtle but detectable
differences in cfDNAs between patients and controls, sug-
gesting that such assay may sensitively distinguish early-
stage disease when in combination with other existing
screening strategies such as low-dose CT scanning [71]. In
addition, the feasibility of detecting genomic alterations in
ctDNA/cfDNA by NGS for early-stage NSCLC have been
reported. A prospective study conducted in surgical stage
I NSCLC showed that the overall concordance rate
between tDNA and matched NGS-based ctDNA assay
was 50.4%, with a sensitivity of 53.8%, a specificity of
47.3%, and a plasma PPV of 53.2% [31]. As the test sensi-
tivity is a key point in detecting early-stage NSCLC with
low levels of ctDNA/cfDNA, interpreting these results has
to be careful and further evaluation are warranted. In
addition to identifying early-stage NSCLC, the ability of
detecting both ubiquitous and heterogeneous SNVs by
NGS-based cfDNA assay has also been reported in a pilot
study, revealing intratumor heterogeneity in early-stage
NSCLC [72]. Moreover, a promising strategy that enabled
early detection and mapping the primary growth site of a
tumor was recently demonstrated by characterization of
methylation haplotyping in plasma cfDNA via the com-
bined use of whole-genome bisulfite sequencing and other
analysis in 59 patients with lung or colorectal cancer [73].
The use of NGS-based liquid biopsy in screening for

early-stage NSCLC is challenging, as an increased risk of
false-positive results is more likely with the increased sensi-
tivity [74]. Clinical concerns on early-stage cancer detection
by ctDNA have arisen [75], whether oncologists should take

action or follow “watch and wait” strategy in case of positive
screening results. Integrating the use of low-dose CT
screening with NGS-based liquid biopsy might hopefully
reduce the lead-time bias and facilitate early detection in
high-risk population for lung cancer. However, how shall
clinicians take action in case one has positive findings from
NGS-based liquid biopsy but no imaging abnormalities
remains a challenge to be solved in the future.

Tracking spatiotemporal tumor evolution
With the application of NGS, intratumoral clonal het-
erogeneity has been demonstrated to be a key factor fos-
tering therapeutic resistance to anti-cancer treatments
[76]. Spatiotemporal tumor evolution undertreatment
selection might be the root of intratumoral heterogen-
eity. NGS-based liquid biopsy has appeared to be a valu-
able approach to decipher the spatiotemporal tumor
evolution of lung cancer. Two evolving patterns of MTL
have been identified in a recent study which performed
serial monitor of ctDNA from 38 patients with advanced
lung cancer (NSCLC accounting for 95%) by digital NGS
[54]. One pattern is the clonal changes while receiving
targeted therapy; the other is the global changes to PD-1
checkpoint inhibitors, chemotherapy, or radiation. Add-
itionally, a large observational study called Tracking
Lung Cancer Evolution Through Treatment (TRACERx)
has been launched (NCT01888601) to depict the spatio-
temporal evolution trace of early-stage lung cancer [77].
A bespoke multiplex-PCR NGS approach to ctDNA pro-
filing in the first 100 TRACERx has demonstrated the
feasibility to characterizing the subclonal dynamics of
relapsing NSCLC and identifying the emerging
subclones prior to clinical recurrence. By following both
clonal and subclonal single nucleotide variants (SNVs)
present in pre-operative plasma and at the time of recur-
rence, the study found that 48% of patients had ≥ 2
detectable SNVs in ctDNA. The median interval be-
tween ctDNA detection and relapse detected by CT
scanning was 70 days. Besides, the phylogenetic origin of
the metastatic subclone could be traced [78]. Just as the
Chinese strategist Sun Tzu ever said, “Know yourself
and know your enemy, you could win every war”. NGS-
based liquid biopsy might potentially contribute to
piecing together a more precise picture of how tumor
evolve and help us evolve our treatment strategies
accordingly to reshape this heterogeneous population.
Along with deeper insights into lung cancer come

novel challenges. As mentioned in the study of ctDNA
profiling in the first 100 TRACERx, the estimated cost
per patient for sequencing of a single tumor region, syn-
thesis of a patient-specific assay panel, and profiling of
five plasma sample is $1750. How to incorporate novel
findings from these high-cost studies into improving
clinical outcomes is a key practical question. One
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potential approach might be adapting treatment strategy
according to evolutionary dynamics to improve the
efficacy of current available agents. DARWIN I study
(NCT02183883), which involves patients registered to
TRACERx study, will assess if targeting EGFR and HER2
mutations by afatinib in NSCLC is more effective when
these mutations are truncal dominant mutations (≥ 50%),
as opposed to non-dominant (≥ 5 to < 50%) or low-
frequency mutations (< 5%) [79]. DARWIN II
(NCT02314481) is an exploratory phase II study
examining the role of intratumor heterogeneity and
predicted neo-antigens on the anti-tumor activity of
anti-PDL1 immunotherapy [80]. Relationship between
intratumor heterogeneity and cfDNA/CTCs will be
explored, which may develop tools for patient selec-
tion and monitoring to be examined in future studies.
Despite these studies are still in infancy, such
endeavors might potentially refine treatment strategies
to improve patient outcomes in the near future.

Conclusions
The integration of NGS and liquid biopsy might comple-
ment the gold standard tissue testing and thrive to be a
promising candidate of genomic profiling in NSCLC.
NGS-based ctDNA assay might be applied in identifying
actionable genomic alterations, dynamically monitoring
response and resistance to targeted agents, prescreening
early-stage lung cancer, and tracking spatiotemporal evo-
lution of lung cancer (Fig. 2). However, challenges
remain such as difficulties in distinguishing clinical
meaningful driver genomic alterations, defining valid
cut-off frequency of being clinically relevant, obstacles in

identifying dominant resistance mechanisms, when to
take action in case of positive ctDNA screening results
in early-stage NSCLC, and cost-effectiveness of tacking
tumor evolution. Further studies are warranted to over-
come these challenges to define the clinical utility of
NGS-based liquid biopsy.
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