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of their results.
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The advent of new immunotherapeutic agents in clinical practice has revolutionized cancer treatment in the past
decade, both in oncology and hematology. The transfer of the immunotherapeutic concepts to the treatment of acute
myeloid leukemia (AML) is hampered by various characteristics of the disease, including non-leukemia-restricted target
antigen expression profile, low endogenous immune responses, and intrinsic resistance mechanisms of the leukemic
blasts against immune responses. However, considerable progress has been made in this field in the past few years.
Within this manuscript, we review the recent developments and the current status of the five currently most
prominent immunotherapeutic concepts: (1) antibody-drug conjugates, (2) T cell-recruiting antibody constructs, (3)
chimeric antigen receptor (CAR) T cells, (4) checkpoint inhibitors, and (5) dendritic cell vaccination. We focus on the
clinical data that has been published so far, both for newly diagnosed and refractory/relapsed AML, but omitting
immunotherapeutic concepts in conjunction with hematopoietic stem cell transplantation. Besides, we have included
important clinical trials that are currently running or have recently been completed but are still lacking full publication

While each of the concepts has its particular merits and inherent problems, the field of immunotherapy of AML seems
to have taken some significant steps forward. Results of currently running trials will reveal the direction of further
development including approaches combining two or more of these concepts.

Keywords: AML, Antibody therapy, Bispecific antibody, CAR T cell, Checkpoint inhibition, Dendritic cell vaccination,

Background

Advances in immunotherapy have revolutionized cancer
therapy in the past few years. Novel immunotherapeutic
approaches are entering the mainstream of oncology. In
hematology, progress has primarily been made in the field
of B-lymphoproliferative diseases including acute lympho-
blastic leukemia (ALL). In acute myeloid leukemia (AML),
novel strategies utilizing the immune system to eliminate
leukemic cells have only recently approached clinical ap-
plication [1, 2]. This is somewhat surprising, considering
that allogeneic hematopoietic stem cell transplantation
(HSCT) is one of the oldest immunotherapeutic strategies
for postremission therapy in AML. So far, HSCT remains
the most successful therapy for prevention of relapse in
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non-favorable risk patients with AML [3, 4]. However,
relapse after allogeneic HSCT does occur, and the vast
majority of elderly patients are not eligible for HSCT.
Therefore, alternative immunotherapeutic strategies are
urgently needed to treat patients not suitable for intensive
treatment regimens as well as patients with relapsed or
refractory (r/r) disease [5].

In ALL, several antibody-based approaches have already
entered standard treatment or are at the verge of approval.
Rituximab, an anti-CD20 directed antibody has been
shown to be beneficial as an additive to conventional
chemotherapeutic agents [6]. Inotuzumab ozogamicin is a
toxin-conjugated monoclonal antibody directed against
CD22 on the surface of B cells. Approval in r/r ALL is ex-
pected in the next year after a phase III trial demonstrated
80.7% overall response rate (ORR) [7]. Moreover, novel T
cell-recruiting therapies have opened up an entirely new
approach to the treatment of acute leukemias, bypassing
typical tumor resistance mechanisms [8]. Blinatumomab,
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a bispecific molecule connecting CD3 in the T cell recep-
tor complex with CD19 expressed by B cells, was the first
T cell-recruiting antibody approved for the treatment of
cancer in 2014 [9]. Chimeric antigen receptor (CAR) T
cells advance this concept even further by engineering a T
cell with the specificity of a monoclonal antibody and a T
cell activation domain. The engineered T cells are thus
capable of targeting surface molecules of tumor cells in
their native conformation independently of MHC [10]. In
principle, all of these treatment modalities can be trans-
lated to AML.

However, targeted immunotherapy relies on a suitable
target antigen to avoid unwanted on-target off-tumor
toxicity. In ALL, the restricted expression profile of
CD19 and CD20 allows to target these B cell-associated
antigens. In AML, it is more difficult to choose an ap-
propriate target antigen due to a more ubiquitous ex-
pression pattern overlapping with healthy hematopoiesis.
Various potential target antigens are studied for each of
the immunotherapeutic strategies [11, 12]. Still, it is to
be expected that targeting AML-associated antigens will
result in prolonged drug-induced cytopenias. This will
require the adjustment of current protocols applied in
ALL to the different setting in AML.

Other immunotherapeutic concepts rely on the
enhancement of endogenous or the priming of new
immune responses. Checkpoint inhibitors have been
successfully approved in several solid organ malignancies
and are now entering the treatment of hematological
diseases [13]. And therapeutic vaccines, particularly
those based on dendritic cells (DCs), have been shown
to reliably induce anti-leukemic immune responses.
Combining these two strategies not only with each other
but also with hypomethylating agents (HMAs), which
have been shown to modulate the immune function,
seems suitable.

In this review, we will present recent advances made
in the aforementioned fields of immunotherapy of AML.
HSCT and immunotherapeutic strategies for relapse
after HSCT constitute a review topic on their own and
have been excluded. As published data from clinical tri-
als is still scarce for the majority of immunotherapeutic
approaches, we will integrate currently running clinical
trials to point out upcoming directions in this field.

Antibody-drug conjugates for immunotherapy of
AML

Compared to conventional antibody formats (Fig. la),
antibody-drug conjugates (ADCs), consisting of mono-
clonal antibodies conjugated to various toxins, are a tool
to bridge conventional chemotherapy and innovative
immunotherapy. Upon internalization, the toxin is re-
leased in the acidic environment of the lysosomes and
reaches the nucleus where it induces cell death through

Page 2 of 20

mechanisms like DNA double strand break and cell
cycle arrest (Fig. 1b). The prerequisite for successful
immunochemotherapy is a rapidly internalizing target
antigen, preferably specific to the tumor [14].

CD33 (SIGLEC-3) is the antigen that has been most
commonly targeted so far in AML. The first and most
prominent ADC in clinical application was gemtuzumab
ozogamicin (GO, Mylotarg, Pfizer), a humanized anti-
CD33 IgG4 antibody conjugated to calicheamicin. Prom-
ising clinical results lead to an accelerated approval of
the antibody by the Food and Drug Administration
(FDA) in 2000 [15]. Safety concerns and failure to verify
clinical benefit in a confirmatory phase III trial enrolling
patients across all cytogenetic risk groups resulted in the
voluntary withdrawal of GO from the market in 2010
[16]. In recent years, both retrospective analyses and
new clinical trials have been performed to unravel clin-
ical benefits of GO in specific subgroups. A meta-
analysis of five randomized controlled trials (RCTs)
showed that the addition of GO to conventional chemo-
therapy significantly reduced the risk of relapse and
resulted in an overall survival (OS) benefit mainly for cy-
togenetically favorable as well as for the intermediate-
risk group [17]. Another meta-analysis of 11 RCTs with
one arm including GO showed improval in OS only for
patients with favorable genetics [18]. A recent clinical
trial testing GO vs. best supportive care including hy-
droxyurea in older patients with newly diagnosed AML
unsuitable for intensive chemotherapy confirmed the
clinical benefit, particularly in those patients with favor-
able or intermediate cytogenetic risk profile [19].

In order to further improve the clinical results with
GO, several clinical trials have been performed evaluat-
ing GO in combination with HMAs. A regimen consist-
ing of hydroxyurea, azacitidine, and GO was tested in a
phase II trial for 142 older patients with newly diagnosed
AML. The predefined goals concerning efficacy and
safety were met for the poor-risk cohort (age =70 years
and performance status 2 or 3), but not for the good-
risk group [20]. GO in combination with both the
histone deacetylase inhibitor vorinostat and the DNA
methyltransferase I inhibitor azacitidine was studied
in a phase I/II trial for older patients with r/r AML.
An ORR of 41.9% was seen among the 43 patients
that were treated at the maximum tolerated dose,
which can be considered rather high in this difficult-
to-treat cohort [21]. And finally, 110 patients with
newly diagnosed or r/r AML or high-risk myelodys-
plastic syndrome (MDS) were treated with decitabine
and GO within a phase II study. Compared to histor-
ical controls, ORR was increased, but not OS [22].
Another combination trial with GO and azacitidine
for patients with relapsed AML has not yet been re-
ported (NCT00766116, Table 1).
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Fig. 1 Mechanisms of cancer immunotherapy. Different immunotherapeutic concepts are discussed in the context of AML in this review.
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a Conventional antibodies directed at AML surface antigens mediate antibody-dependent cellular cytotoxicity as well as complement-mediated
cytotoxicity. b Antibody-drug conjugates consist of monoclonal antibodies conjugated to various toxins, which are released upon internalization
and induce cell death through mechanisms like DNA double-strand break and cell cycle arrest. ¢ T cell-recruiting antibody constructs are
composed of single-chain variable fragments of two antibodies of different specificity connected by a short peptide linker. Their purpose is to
bring malignant cells and T cells in close proximity through simultaneous binding of a tumor-associated antigen and CD3e in the T cell receptor

enhance pre-existing antigen-specific immune responses

complex. d Chimeric antigen receptors (CARs) are genetically engineered cell membrane-bound receptors combining extracellular antibody
binding and intracellular effector cell signaling. Their structure enables both MHC-independent antigen binding and highly potent cytotoxic
effector cell function. Compared to the first generation of CARs, the introduction of various costimulatory domains in later-generation CAR
constructs greatly improved their anti-tumor effector function. e Checkpoint inhibitors are monoclonal antibodies binding to inhibitory receptors
on T cells or their ligands on antigen-presenting cells or cancer cells, thus boosting the effects of pre-existing T cell responses. f Dendritic cells
are professional antigen-presenting cells. Vaccination strategies using in vitro-generated dendritic cells have the purpose to prime new or

As CD33 is expressed on >30% of healthy bone mar-
row cells, on-target off-leukemia toxicity is inevitable
[23-25]. However, a major part of the side effects ob-
served in the clinical trials with GO were attributed to
linker instabilities and subsequent off-target toxicities
[26, 27]. A lot of effort has therefore been put into the
optimization of the ADC technology. An alternative ADC
directed against CD33, SGN-CD33A (vadastuximab talir-
ine), has recently entered clinical trials. In this construct, a
monoclonal anti-CD33 antibody is conjugated to a highly
potent DNA-binding pyrrolobenzodiazepine dimer. The
linker technology has been optimized and allows uniform
drug loading [28]. Based on promising preclinical data,
several clinical trials have been initiated evaluating safety

and efficacy of SGN-CD33A alone or in various combina-
tions. Twenty-seven treatment-naive AML patients
ineligible for intensive chemotherapy were treated with
the recommended monotherapy dose of 40 pg/kg
within a phase I study (NCT01902329). The adverse
events (AEs) observed were reported to be generally
manageable, with a preponderance of myelosuppres-
sion. Combined complete remission (CR) and complete
remission with incomplete recovery (CRi) rate was 54%
[29]. Within another cohort of the same study, 53 pa-
tients were treated with a combination of SGN-CD33A
and HMAs, resulting in an encouraging CR/CRi rate of
73% [30]. The addition of the ADC to standard 7 + 3 in-
duction chemotherapy is tested within a large phase Ib
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(NCT02326584) study. Preliminary results have been
reported for the first 42 patients of this study. The com-
bination therapy resulted in grade 4 myelosuppression in
all patients, but no increase in non-hematological AEs was
reported compared to chemotherapy alone. Synergistic ef-
fects of HMAs and CD33-directed immunotherapy are
supported by a high CR/CRi rate of 78% [31]. This could
be due to HMA-induced increase in CD33 expression as
well as increased sensitivity to toxin-induced DNA dam-
age [28]. Based on the encouraging response data, a phase
II study of SGN-CD33A in combination with azacitidine
or decitabine for older patients with newly diagnosed
AML (CASCADE study) has recently been initiated
(NCT02785900). However, potential hepatotoxicity, in-
cluding veno-occlusive disease (VOD), is a major concern,
particularly in the combination of SGN-CD33A with allo-
geneic HSCT before or after the treatment. Both phase I
studies discussed above have therefore been put on hold
by the FDA to explore the incidence of VOD, while the
CASCADE trial continues enrollment [32].

SGN-CD123A is a similar ADC with the antibody
directed at CD123 instead of CD33. CD123 is more re-
strictively expressed in the healthy hematopoietic com-
partment, which might decrease on-target off-leukemia
toxicities [24, 33]. This is being tested in the recently
initiated phase I trial, which is planned to recruit 102 pa-
tients with r/r AML (NCT02848248).

ImmunoGen developed IMGN779, a CD33-directed
monoclonal antibody conjugated to the novel DNA-
alkylating molecule DGN462. Preclinical data demon-
strated highly specific in vitro and in vivo cytotoxicity
against primary AML cells, especially in samples with an
FLT-ITD mutation [34, 35]. The combinatorial approach
of IMGN779 with the PARP inhibitor Olaparib resulted
in enhanced ex vivo activity and a decreased tumor bur-
den in a xenograft mouse model [36]. A clinical phase I
study in r/r AML is currently recruiting patients (124
patients planned, NCT02674763). Results of this study
will show if there is any benefit over the usage of SGN-
CD33A in terms of the risk-benefit ratio. Apart from the
conjugation to toxins, monoclonal anti-CD33 antibodies
have also been conjugated to radioisotopes. However,
first clinical studies have demonstrated less promising
results and most of these strategies are currently not fur-
ther pursued [37, 38].

Taken together, the field of ADCs finally seems to re-
cover from the huge setback it originally suffered after
the voluntary withdrawal of GO in 2010. A lot of effort
has been put into the optimization of the ADC technol-
ogy, and clinical results from early trials demonstrate
promising response rates. Results of randomized phase
III trials are eagerly awaited in order to estimate the
risk-benefit ratio between a potential increase in re-
sponse rates and the discussed side effects due to on-
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target off-leukemia toxicities and toxin-induced hepatic
toxicity. In order to increase target cell specificity of the
therapy, alternative target antigens are being evaluated
in preclinical (i.e., CLL-1, SAIL) [39-41] and early clin-
ical studies (i.e., CD25, FLT3) [42, 43].

T cell-recruiting antibody constructs for
immunotherapy of AML

T cell-recruiting antibody constructs are a novel class of
molecules composed of the single-chain variable frag-
ments (scFv) of two antibodies of different specificity
connected by a short peptide linker (Fig. 1c). Through
simultaneous binding of a tumor-associated antigen and
CD3¢ in the T cell receptor complex, these small adapter
molecules bring malignant cells and T cells in close
proximity. The binding of CD3e leads to T cell activation
and expansion resulting in Granzyme B/perforin-medi-
ated target cell lysis. The special feature of this strategy
is that virtually any memory T cell can be recruited for
target cell lysis irrespective of its specificity [44, 45].
Clinical proof of concept has been provided with blina-
tumomab (BLINCYTO®, AMGEN), a CD19/CD3 T cell-
recruiting antibody construct. It was approved as the
first in its class by the FDA in 2014 for r/r Ph-
negative B-precursor ALL, after a clinical phase II
trial demonstrated a CR/CRi rate of 43% after one or
two cycles of therapy [9]. Very recently, the superior-
ity of blinatumomab to conventional chemotherapy
for patients with r/r B-precusor ALL was proven in a
randomized phase III trial [46].

In AML, several T cell-recruiting antibody constructs
are under preclinical and early clinical development
(Table 2). Similar to the ADCs, the optimal antigen to
target is still an open question. The sister molecule of
blinatumomab, AMG 330, is a bispecific T cell engager
(BiTE) construct targeting CD33 [25, 47]. The high
inter- as well as intra-patient variations in CD33 expres-
sion levels might influence the success of targeted
immunotherapy. Significantly lower expression has been
demonstrated for CD34"/CD38™ leukemia-initiating cells
(LICs) vs. AML bulk cells, but expression was still
significantly higher compared to their healthy counter-
parts (CD34%/CD38  normal hematopoietic stem cells).
In preclinical studies, the preincubation of AML cells
with AMG 330 and T cells prevented the subsequent en-
graftment of AML in NOD/SCID gamma null (NSG)
mice. This suggests that the CD33 expression level of
LICs is sufficient for elimination with T cell-recruiting
constructs. Besides, it has been demonstrated in vitro
that the CD33 expression level mainly influences kinet-
ics of cytotoxicity, but not necessarily the response rate
[25, 48]. Recently, an international, multicenter phase I
trial for r/r AML patients (#=50) was initiated
(NCT02520427), but data are not yet available. Several
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other CD33-targeting antibody constructs that differ
from AMG 330 in their molecular structure are cur-
rently evaluated in preclinical settings [12, 49, 50].

To reduce on-target off-leukemia toxicity, alternative
AML-associated targets are being explored. CD123 has a
lower level of expression on healthy hematopoietic cells
compared to CD33 [24, 33]. Therefore, several T cell-
recruiting antibody constructs targeting CD123 have
been developed and are currently in early clinical studies.
One of these constructs is MGD006, developed by Macro-
Genics. In contrast to the BiTE technology, dual-affinity
re-targeting (DART) molecules are composed of heavy
and light chain variable domains of two antigen-binding
specificities (A +B) on two independent polypeptide
chains (VLA-VHg-VLg-VH,), which are stabilized through
an additional C-terminal bridge [51, 52]. Encouraging pre-
clinical data in terms of cytotoxicity against primary AML
cells [53] and safe and well-tolerated infusion of MGDO006
in cynomolgus monkeys [54] paved the way for the clinical
development in a multicenter phase I study of 124 re-
lapsed/refractory AML patients (NCT02152956).

XmAb14045, developed by Xencor, is a structurally
distinct anti-CD123 T cell-recruiting antibody construct
in early clinical development. The XmAb technology en-
sures structural stability and an extended serum half-life
through the retention of an inactive Fc part. Preclinical
studies in cynomolgus monkeys showed rapid clearance of
CD123" cells from the bone marrow as well as from the
periphery [55]. These studies formed the basis for the ini-
tiation of a clinical phase I study for the evaluation of
safety and tolerability of Xmab14045 in 66 patients with
CD123-expressing hematological malignancies including
primary and secondary AML (NCT02730312).

JNJ-63709178, a CD123/CD3 humanized IgG4 anti-
body has been developed by Genmab using their Duo-
Body technology. Preclinical studies in vitro and in vivo
showed highly specific T cell activation and targeting of
primary AML cells [56, 57], which lead to the initiation
of a phase I study in relapsed/refractory AML (n = 60,
NCTO02715011). Currently, the study is on hold because
of the occurrence of undisclosed adverse events.

CLL-1 is a novel target antigen in AML characterized
by its high expression on AML bulk cells as well as LICs
[58, 59]. Recently, a bispecific CLL-1/CD3 antibody con-
struct (MCLA-117) has been developed by Merus B.V.
MCLA-117 induced target antigen-specific cytotoxicity
against primary AML cells at low E:T ratios using either
allogeneic or autologous T cells. This led to the initiation
of a clinical phase I trial in r/r or elderly, previously un-
treated AML patients (NCT03038230, n = 50) [60].

Results of the ongoing trials are awaited to see if the
success in ALL will translate into the setting of AML. A
potential future strategy could be to use the evolving anti-
body technology to simultaneously target two different
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AML-associated antigens in order to increase specificity
[61]. Apart from that, lots of effort has been put into
optimization of the antibody technology to increase safety.
The Probody™ technology by CytomX uses antigen-
binding site masking peptides attached to antibody
constructs by substrate-cleavable linkers. In the tumor
microenvironment, linkers are cleaved by highly active
proteases generating effective immunotherapeutic agents
directly at the tumor site [62]. Recently, an EGFR/CD3
Probody™ has shown promising results in terms of efficacy
and increase in therapeutic window in preclinical studies
in vitro and in vivo. As the technology relies on tumor
site-specific protease activity, it remains to be determined
if this approach is also feasible in acute leukemia [63].

Independently of considerations about the optimal tar-
get antigen, we are only at the beginning of understand-
ing the exact mechanism of action of those antibody
constructs and resistance mechanisms that potentially
evolve upon T cell activation. Despite the promising
response rate of 43% using blinatumomab in heavily pre-
treated ALL patients, reasons for resistance in the
remaining patients have not been resolved. Only few
biomarkers for response have been determined so far,
e.g., in case of the blinatumomab studies, the percentage
of blasts in the bone marrow and the degree of T cell ex-
pansion [9, 64]. PD-L1 upregulation on AML cells upon
T cell activation has been suggested as a potential resist-
ance mechanism in an ex vivo system [48] and in a case
report of a blinatumomab-refractory B-precursor ALL
patient [65]. Addition of a checkpoint inhibitor to T cell-
recruiting antibodies might help to circumvent resist-
ance. A clinical study testing this concept by addition of
an anti-PD1 antibody with or without an anti-CTLA4
antibody to blinatumomab for the treatment of r/r ALL
patients has been initiated, but is not yet open for pa-
tient recruitment (NCT02879695).

CAR T cells for immunotherapy of AML
Circumventing T cell exhaustion, anergy and senes-
cence, CAR T cells take the technology of T cell-
recruiting antibody constructs one step further and
have already shown promising clinical results in vari-
ous hematologic malignancies. CARs are genetically
engineered cell membrane-bound receptors that com-
bine extracellular antibody binding and intracellular
effector cell signaling, thereby enabling both MHC-
independent antigen binding and highly potent cyto-
toxic effector cell function (Fig. 1d). Since the first
generation of CARs in 1989 [66], the introduction of
costimulatory domains (mainly CD28 or 4-1BB) in so-
called second-generation CAR constructs greatly im-
proved their anti-tumor effector function and paved
their way into clinical trials [67].
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To date, the most prominent target antigen for CAR T
cell therapy is CD19, due to its restrictive expression pat-
tern and good safety profile. Groundbreaking early clinical
trial results could be achieved for various B cell malignan-
cies. In r/r B-ALL, treatment with anti-CD19 4-1BB-
costimulatory CAR T cells achieved MRD-negative CR
rates of 86% for 29 patients [68]. These are outstanding
clinical results, considering the heavily pretreated patient
population that was included: in the median, patients had
received three prior intensive chemotherapy regimens,
and more than one third had relapsed after prior allogen-
eic HSCT. In another recently published trial, treatment
with anti-CD19 CD28-costimulatory CAR T cells showed
great clinical efficacy with CR rates of 57% in seven pa-
tients with DLBCL refractory to at least three prior lines
of therapy [69]. As of November 1, 2016, 1135 patients
have been treated with anti-CD19 genetically engineered
TCR/CAR T cells [70], leading to high expectations for pa-
tients with no therapeutic options until now. Accordingly,
there are currently 87 open clinical phase I or II trials in-
volving anti-CD19 CAR T cells in B cell malignancies
(ClinicalTrials.gov, last update 03/07/2017).

Despite these promising early results and the rapidly
expanding number of anti-CD19 CAR T cell trials, this
novel drug format is still incompletely understood and
cannot generally be considered safe. In March 2017,
Juno announced to shut down development of anti-
CD19 CD28-costimulatory JCAR015 CAR T cells and to
close their phase II ROCKET trial in r/r adult ALL, after
five treatment-related deaths had occurred due to CAR
T cell-mediated neurotoxicity [71]. As “living drugs,” the
in vivo effect of CAR T cells may be dependent on differ-
ent conditioning chemotherapy regimens, CAR T cell
manufacturing protocols and costimulatory domains.
Unfortunate combinations of these variables may pro-
mote rapid in vivo expansion of CAR T cells with the
potential to induce severe systemic and neurological side
effects.

Translating CAR T cell therapy to AML is complicated
again by the non-restricted expression of AML-
associated antigens. Given that current CAR T cell con-
structs can persist beyond 4 years in the human body
[72], several strategies are being explored to circumvent
unwanted on-target off-leukemia toxicity, particularly
long-term myeloid cell aplasia. Similar to ADCs and T
cell-recruiting antibody constructs, the identification of
AML-specific target antigens or antigen combinations
would be one way to improve safety of future CAR T cell
approaches in AML. To date, several target antigens for
AML CAR T cell therapy are under preclinical and clin-
ical investigation.

CD33 is the most prominent target antigen for CAR T
cells in preclinical trials due to its high and persistent
expression in the majority of AML patients [24, 73]. In
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an in vivo model of AML-xenotransplanted NSG mice,
treatment with anti-CD33 CAR T cells resulted in marked
reduction of leukemic burden and prolonged survival [74].
However, significant on-target off-leukemia toxicity with
reduction of myeloid lineage and hematopoietic stem cells
was observed. In another in vivo model of AML-
xenotransplantated NSG mice, treatment with only transi-
ent CAR expression via electroporation of T cells with
anti-CD33 CAR-encoding RNA resulted in similar, but
only transient cytotoxicity [75]. Application of CAR T cells
directed against CD123 as an alternative target in an in
vivo model with AML-xenotransplanted mice resulted in
significant reduction of leukemic burden and prolonged
survival with only limited on-target off-leukemia toxicity
and unaffected healthy hematopoiesis [76-79]. In con-
trast, eradication of normal human myelopoiesis was dem-
onstrated in another in vivo mouse study with anti-CD123
CAR T cells [80]. Interestingly, modifying the anti-CD123
scEv by utilizing Vi and Vi, chains from different mono-
clonal antibodies could reduce myelotoxicity in an AML
mouse model [79]. This conflicting data indicates that var-
iations in antibody clone, costimulatory domain, effector
cells, and model system might account for vastly different
outcomes. Fine-tuning the development process of CAR T
cells might be able to provide differential recognition of
target antigens on leukemic vs. healthy cells.

Other potential target antigens identified in preclinical
studies include CD44v6 [81], CLL1 [82], FLT3 [83], FRB
[84], LeY [85], NKG2D [86], and PR1/HLA-A2 [87].

To date, only one very small trial evaluating anti-LeY
CAR T cells (CTX08-0002) in r/r AML has been com-
pleted. None of the four treated patients developed
grade 3 or 4 toxicity, and infused CAR T cells persisted
for up to 10 months. One patient with active leukemia
responded with transient reduction in blast count before
progression 1 month later. All patients relapsed 28 days
to 23 months after adoptive CAR T cell transfer [88].
Currently, there are four open phase I clinical trials that
evaluate the application of CAR constructs in r/r AML
(Table 3). One trial recruiting in China is including pa-
tients with r/r AML for treatment with anti-CD33 CAR
cytokine-induced killer (CIK) cells (NCT01864902). So
far, there has only been a report of one patient within
this trial who showed a transient decrease in blast count
while suffering from cytokine release syndrome and pan-
cytopenia [89]. Trial completion is estimated to be in
2017. Two other trials evaluate lentivirally transduced or
mRNA-electroporated anti-CD123 CAR T cells, respect-
ively (NCT02159495, NCT02623582), however, the latter
one has been prematurely terminated. Until now, no re-
sults have been published. Another phase I trial utilizing
allogeneic “off-the-shelf” anti-CD123 CAR T cells
(UCART123) was recently opened (NCT03190278 [90]).
And finally, a trial applying CAR T cells directed at
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NKG2D ligands to patients with r/r AML, MDS, and
multiple myeloma is estimated to be completed in 2017,
but results are still pending (NCT02203825).

Novel CAR designs are explored to increase the speci-
ficity and to improve safety profiles. In preclinical in vivo
models, dual-targeting approaches targeting two inde-
pendent leukemia-associated antigens were shown to
provide increased specificity accompanied by reduced
off-leukemia toxicity [91] and to prevent antigen escape
mechanisms [92]. In vitro, it was demonstrated that dual
targeting of CD33 and CD123 was superior to monospe-
cific approaches in terms of specific cytotoxicity [93].
Further preclinical investigation and translation of dual-
targeting strategies into clinics could contribute to
efficacy and safety in CAR T cell therapy in AML where
target specificity remains a major issue. On-target off-
leukemia toxicity could also be further reduced by fine-
tuning of CAR density and CAR binding affinity [94]. In
light of safety concerns due to unrestricted in vivo CAR
T cell expansion and activation, methods of selective
CAR T cell depletion are currently being investigated.
Integration of so-called suicide gene systems into CAR
constructs could act as safety switches enabling rapid
on-demand elimination of CAR T cells that would other-
wise turn uncontrollable. These suicide gene systems
can be based on enzymatic activation of cytotoxic pro-
drugs, antibody-based targeting of overexpressed surface
antigens, or pharmacological induction of apoptosis via
inducible caspase 9 which is already tested in clinical
phase I CAR T cell trials (NCT03016377 [95]).

Checkpoint inhibitors for inmunotherapy of AML
In contrast to the immunotherapeutic concepts discussed
so far, monoclonal antibodies against checkpoint mole-
cules are applied with the idea to unleash pre-existing
anti-tumor T cell responses (Fig. 1e). Within recent years,
checkpoint inhibition has probably become the single
biggest hype in cancer immunotherapy, primarily in solid
oncology, but meanwhile, also finding its way into
hematology [96]. Most prominently within hematologic
diseases, anti-PD-1 antibodies show remarkable success in
Hodgkin’s lymphoma and are tested in various non-
Hodgkin lymphomas. However, there is growing evidence
from in vitro experiments and murine models that this
strategy could also be applied to AML [96].

Only one clinical study applying a checkpoint antibody
as a monotherapy to AML patients has been published
so far. Eighteen patients with various hematologic malig-
nancies, including eight patients with AML, were treated
with the anti-PD-1 antibody pidilizumab within a phase
I study. The antibody was shown to be safe and well tol-
erable, and one of the AML patients showed a minimal
response manifested by a decrease in peripheral blasts
from 50 to 5% [97]. A phase I study testing the CTLA-4
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antibody ipilimumab in various malignancies including
12 patients with AML has long been completed, but to
our knowledge, specific results for AML patients have
not been published (NCT00039091, Table 4). Another
phase I study, in which ipilimumab was applied to 54
patients with refractory AML, MDS, or chronic myelomo-
nocytic leukemia (CMML), has finished recruiting, but
results have not yet been reported (NCT01757639). And
three phase II studies (NCT02275533, NCT02532231,
NCT02708641) are studying the effect of PD-1 inhibition
with either nivolumab or pembrolizumab as a monother-
apy on prevention of relapse in remission.

While the results of these studies have to be awaited
to judge the potential of checkpoint inhibitors as a
monotherapy for AML, various combination therapies
are already tested in clinical trials. A phase II study is
combining lymphodepletion with a fludarabine/melpha-
lane regimen followed by autologous stem cell trans-
plantation with anti-PD-1 therapy with the goal to
reduce relapse rates in non-favorable AML patients in
remission (NCT02771197). The combination of standard
high-dose cytarabine with anti-PD-1 therapy is tested as
a salvage therapy in a phase II study planned to recruit
37 patients with r/r AML (NCT02768792). And a phase
I/II study analyzes the maximal tolerable dose of an
anti-PD-1 antibody in addition to idarubicin and cytara-
bine for induction of de novo AML (NCT02464657). No
results for any of these studies have been reported so
far. The combination of a PD-1 antibody with a vaccin-
ation strategy based on AML DC hybridoma is described
in the DC chapter below (NCT01096602, Table 5).

A high interest is currently generated by the idea to
combine checkpoint inhibition with HMAs. The evalu-
ation of PD-1 as well as PD-L1 expression in patients
with MDS or AML receiving HMAs showed upregula-
tion of both markers on mRNA level [98]. Therefore,
several trials are evaluating the efficacy of HMAs com-
bined with either CTLA-4, PD-1, or PD-L1 blocking
antibodies (Table 4). First results for this strategy within
a phase Ib/II study combining the PD-1 blocking anti-
body nivolumab with azacitidine in patients with r/r
AML have recently been presented. Toxicity was com-
parable with other trials using checkpoint blockade, and
outcomes have been encouraging with a median overall
survival of 9.3 months in this study with a predomin-
antly poor-risk patient population [99].

Taken together, checkpoint inhibition in AML is still
in its infancy, and results of the currently ongoing trials
have to be awaited before further conclusions about the
applicability of this concept to AML and the existence
of any AML-specific side effects of checkpoint inhibition
can be drawn. Combination therapies including check-
point inhibitors, particularly with HMAs, might turn out
to be an important step forward.
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Dendritic cell vaccination for immunotherapy of
AML

Vaccination strategies have the purpose to prime new or
enhance pre-existing antigen-specific immune responses.
DCs are highly eligible for the induction of tailored,
strong, and durable responses (Fig. 1f). This is of par-
ticular importance for the treatment of tumor entities
with low endogenous immune responses, such as AML.
In spite of the high costs and efforts accruing for the
production of this patient-specific cellular therapy, DC-
based vaccination strategies for the treatment of AML
are therefore actively pursued. Important variables in
these studies are source of DC precursors, DC matur-
ation protocol, target antigen, way of antigen loading
route of application, and interval of application [100].
While monocyte-derived DCs are used in the majority of
studies and are considered to induce the strongest
immune responses, alternative DC-like constructs are
also applied [1].

Recently, an interesting clinical trial has been pub-
lished presenting 17 AML patients that were vaccinated
in CR with a hybridoma of AML cells and autologous
DCs [101]. The vaccination was well tolerated, and a
considerable increase in leukemia-specific T cells was
found that persisted for more than 6 months. High
relapse-free survival was described, but a strong selec-
tion bias for long-term survivors currently impedes fur-
ther interpretations. This patient cohort is part of a
larger study that is designated to analyze the combina-
torial effect of PD-1 blockade with the described vaccin-
ation strategy (NCT01096602, see Table 5). However,
data for the combination therapy has not been released.

DCPrime uses an off-the-shelf product based on a pre-
cursor human dendritic cell line. This platform was tested
in a phase I/II study for AML patients (NCT01373515),
and vaccinations were well tolerated with induction of
multi-functional immune responses, resulting in the prep-
aration of a multi-center phase II study. However, there is
no full publication of the study results available at present.
To our knowledge, no other clinical trial is currently
recruiting patients for vaccination concepts with DC-like
cells, as a study based on a fusion concept has been termi-
nated early due to slow accrual (NCT00100971), and two
studies using modified leukemic blasts (NCT00136422,
NCT00963521) have been completed, but their results
have not been published (see Table 5).

Monocyte-derived DCs loaded with various antigens
are the most commonly used source for DC vaccination
trials. Five clinical studies are currently active or recruit-
ing. A small French study (# =5) uses AML apoptotic
corpses to load DCs (NCT01146262). A group in
Belgium that has already completed a phase I/II study
on vaccination with WT1 mRNA-loaded DCs for 10
AML patients in remission with high risk of relapse
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demonstrating immunological as well as clinical re-
sponses [102] is now conducting a phase II study testing
the induction of immune and molecular responses by
vaccination with WT'1 mRNA-loaded DCs for AML as
well as chronic myeloid leukemia and multiple myeloma
patients (NCT 00965224). Besides, the same group also
conducts a large (estimated enrollment, 138 patients) ran-
domized phase II study on AML patients in CR/CRi with
WT1 overexpression with the goal to determine clinical
effects of DC vaccination in terms of relapse rate, disease-
free survival, and overall survival (NCT01686334). Results
of this study are eagerly awaited, but are not to be
expected before 2020.

Our group in Munich has developed a protocol for
the generation of DCs by the use of a TLR7/8 agonist
[103, 104]. These DCs show improved immunogen-
icity compared to conventional monocyte-derived DCs
[105]. We are currently conducting a phase I/II
proof-of-concept study using this type of DCs loaded
with mRNA encoding WT'1 and PRAME for intrader-
mal vaccination of AML patients in CR with a non-
favorable risk profile (NCT01734304) [106]. Prelimin-
ary results for 13 patients have already been reported
at ASH, showing that DC generation is feasible, that
their application is safe with delayed-type hypersensi-
tivity reactions at the injection sites, but no serious
adverse events, and that novel immune responses to
both antigens can be induced. Immune responses
were markedly increased by combination of DC vac-
cination with azacitidine within an individual treat-
ment attempt [107]. A very similar study is conducted
by our collaborators in Norway (NCT02405338).

Besides current clinical studies, a few interesting new
developments in the field of DCs in the context of AML
immunotherapy have been described in the past 2 years.
In an effort to further optimize the immunostimulatory
capacities of monocyte-derived DCs, electroporation of
mRNA encoding both for IL-15 and for IL-15 receptor
alpha was shown to result in enhanced NK cell activation
[108]. Besides, evidence was provided that monocyte-
derived DCs express RHAMM independent of RNA
electroporation at a level high enough to induce
RHAMM-specific T cells [109].

In conclusion, current data suggests that DC vaccin-
ation is particularly successful at inducing novel immune
responses. Combining this approach with checkpoint in-
hibition or immunomodulating agents including HMAs
in order to further enhance the immune responses
seems an interesting way to follow.

Conclusions

Immunotherapy of cancer has made unprecedented pro-
gress in the past few years. While novel immunothera-
peutic strategies have already moved into standard
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clinical practice for various solid cancers as well as se-
lected hematological neoplasms including ALL, a similar
development is lagging behind for the treatment of
AML. However, different immunotherapeutic concepts
are currently being evaluated in clinical trials, with some
promising results already published and a lot more of
interesting studies expected to be completed within the
next couple of years.

The lack of an appropriate target antigen with a re-
stricted expression pattern similar to CD19 or CD20 for
B cell neoplasms is a major obstacle for the application
of targeted immunotherapy in AML. This problem is
shared by ADCs, T cell-recruiting antibody constructs
and CAR T cell constructs, where promising leukemia-
specific responses seen in early clinical trials are often ac-
companied by severe on-target off-leukemia toxicity to the
myeloid compartment. CD33 and CD123 are the major
target antigens of constructs in clinical development so
far. Results of the ongoing clinical trials need to be
awaited in order to weigh potential benefits vs. side effects.
In order to prospectively reduce on-target off-leukemia
toxicities, several strategies are followed: The identifica-
tion of novel leukemia-associated antigens could provide
more specific targets. Comprehensive transcriptomic and
proteomic analysis is ongoing to fully characterize the
AML surfaceome [110]. Alternatively, leukemia-specific
neoantigens arising from AML-associated mutations
should be further evaluated as source of novel target mol-
ecules. Furthermore, dual-targeting approaches could
improve treatment specificity while relying on combina-
tions of already known AML-associated antigens.

ADCs have already proven their therapeutic potential
in AML. Results of currently running clinical trials will
help to identify the optimal clinical setting and to better
estimate the risk-benefit ratio. In contrast, T cell-
recruiting antibodies and CAR T cell constructs are still
in the early phase of clinical development for the therapy
of AML, with several currently running phase I trials
studying the feasibility and toxicity of their application.
Activation of endogenous T cell responses through
checkpoint blockade and/or DC vaccines appears to be
safe, but has yet to demonstrate its clinical potency
when used as a monotherapy for the treatment of AML.
Different combinations including HMAs to modulate
immune responsiveness appear suitable and are increas-
ingly being tested.

While immunotherapy in AML is complicated by dif-
ferent characteristics including lack of an AML-specific
target antigen, low mutational burden resulting in low
endogenous immune responses and intrinsic resistance
mechanisms of the leukemic blasts against immune
responses, remarkable progress has been made with
different strategies in the past few years. Hope is high
that alternative immunotherapeutic strategies with less
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treatment-related morbidity and mortality compared to
allogeneic HSCT will move into clinical practice within
the coming years. Still, many further steps have to be
taken before the vision of an individualized immuno-
therapy for each AML patient based on risk factors and
biomarkers can become clinical reality.
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