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Abstract

Bispecific antibodies (BsAbs) recognize two different epitopes. This dual specificity opens up a wide range of
applications, including redirecting T cells to tumor cells, blocking two different signaling pathways simultaneously,
dual targeting of different disease mediators, and delivering payloads to targeted sites. The approval of catumaxomab
(anti-EpCAM and anti-CD3) and blinatumomab (anti-CD19 and anti-CD3) has become a major milestone in the
development of bsAbs. Currently, more than 60 different bsAb formats exist, some of them making their way into
the clinical pipeline. This review summarizes diverse formats of bsAbs and their clinical applications and sheds
light on strategies to optimize the design of bsAbs.
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Background
Currently, 44 monoclonal antibody (mAb)-based prod-
ucts are marketed, which generated approximately $75
billion USD in total worldwide sales in 2013 [1]. Thera-
peutic antibodies have become a mainstay of therapeutic
options for patients with cancer and autoimmune, in-
flammatory, and various other diseases [2, 3]. However,
mAbs have several limitations. Patients receiving mAb
therapy may develop drug resistance or fail to respond
to treatment [4]. Cancer and other diseases are multifac-
torial, with many signaling pathways implicated in
pathogenesis. Single-target immunotherapy does not
seem to destroy cancer cells sufficiently. Bispecific anti-
bodies (BsAbs) have been posited as potential cancer
therapeutic agents for decades but have only recently
begun to bear fruit. BsAbs show several advantages [5]:
(1) bsAbs can redirect specific immune cells to the
tumor cells to enhance tumor killing, (2) bsAbs will enable
the simultaneous blocking of two different mediators/
pathways that exert unique or overlapping functions in
pathogenesis, and (3) bsAbs can potentially increase bind-
ing specificity by interacting with two different cell-surface
antigens instead of one.
The development of bsAbs has long been hampered

by manufacturing problems such as product instability,

low expression yields, and immunogenicity [6]. Newer
formats of bsAbs that are more stable, easier to produce,
and less immunogenic have been made available. Cur-
rently, over 30 bsAbs are in clinical development, with
two of the front-runners approved for the market
(Table 1).
BsAbs are primarily produced by three methods [7]:

(1) quadroma technology based on the somatic fusion of
two different hybridoma cell lines, (2) chemical conjuga-
tion, which involves chemical cross-linkers, and (3) gen-
etic approaches utilizing recombinant DNA technology.
These technologies have revolutionized the development
of bsAbs, and a large variety of formats have been gener-
ated to cater to particular applications, some of which
are discussed in this review.

BsAb formats
BsAbs can be roughly divided into two categories: im-
munoglobulin G (IgG)-like molecules and non-IgG-like
molecules (Fig.1). IgG-like bsAbs retain Fc-mediated ef-
fector functions such as antibody-dependent cell-
mediated cytotoxicity (ADCC), complement-dependent
cytotoxicity (CDC), and antibody-dependent cellular
phagocytosis (ADCP) [6]. The Fc region of bsAbs facili-
tates purification and improves solubility and stability.
BsAbs in IgG-like formats usually have longer serum
half-lives owing to their larger size and FcRn-mediated
recycling [8]. Non-IgG-like bsAbs are smaller in size,
leading to enhanced tissue penetration [8].

* Correspondence: jmli@nccl.org.cn
1National Center for Clinical Laboratories, Beijing Hospital, No 1 Dahua Road,
Dongdan, Beijing 100730, China
2Graduate School, Peking Union Medical College, Chinese Academy of
Medical Sciences, Beijing 100730, China
Full list of author information is available at the end of the article

© 2015 Fan et al. Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and
reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to
the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver
(http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.

Fan et al. Journal of Hematology & Oncology  (2015) 8:130 
DOI 10.1186/s13045-015-0227-0

http://crossmark.crossref.org/dialog/?doi=10.1186/s13045-015-0227-0&domain=pdf
mailto:jmli@nccl.org.cn
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/


Table 1 Bispecific antibodies in clinical trials. Information from ClinicalTrials.gov (https://clinicaltrials.gov)

BsAb Sponsor Formats Targets Biological function Clinical trial × identifier Diseases

Catumaxomab Neovii Biotech Triomab EpCAM × CD3 T cell recruitment, Fc-mediated
effector function

Approved in EU EpCAM-positive tumor, malignant
ascites

AGO Study Group Completed phase IIa,
NCT00189345

Platinum refractory epithelial
ovarian cancer

AIO-Studien-gGmbH Phase II, NCT01504256 Gastric adenocarcinomas

Grupo Español de Investigación
en Cáncer de Ovario

Phase II, NCT01246440 Ovarian cancer

Gustave Roussy Phase IINCT01784900 Gastric peritoneal carcinomatosis

Ertumaxomab Krankenhaus Nordwest Triomab HER2 × CD3 T cell recruitment, Fc-mediated
effector function

Phase I/II, NCT01569412 Her2/Neu-positive advanced solid
tumors

FBTA05 Technische Universität München TrioMab CD20 × CD3 T cell recruitment Phase I/II,NCT01138579 Leukemia

Blinatumomab Amgen Research (Munich) GmbH BiTE CD3 × CD19 T cell recruitment Approved in USA ALL

Amgen Research (Munich) GmbH Phase I, NCT00274742 Relapsed NHL

Amgen Research (Munich) GmbH Phase II, NCT01207388 B cell ALL

Amgen Research (Munich) GmbH Phase II, NCT01209286 Relapsed/refractory ALL

National Cancer Institute Phase I, NCT02568553 NHL

National Cancer Institute Phase II, NCT02143414 Adult B-ALL with t(9;22)(q34;q11.2);
BCR-ABL1; untreated adult ALL

National Cancer Institute Phase III, NCT02003222 BCR-ABL-negative B lineage ALL

Solitomab (MT110,
AMG 110)

Amgen Research (Munich) GmbH BiTE CD3 × EpCAM T cell recruitment Completed phase I,
NCT00635596

Solid tumors

AMG 330 Amgen BiTE CD33 × CD3 T cell recruitment Phase I, NCT02520427 Relapsed/refractory AML

MT112 (BAY2010112) Bayer BiTE PSMA × CD3 T cell recruitment Phase I, NCT01723475 Prostatic neoplasms

MT111 (MEDI-565) MedImmune LLC BiTE CEA × CD3 T cell recruitment Completed phase I,
NCT01284231

Gastrointestinal adenocarcinomas

BAY2010112 Bayer BiTE CD3 × PSMA T cell recruitment Phase I, NCT01723475 Prostatic neoplasms

MEDI-565 MedImmune LLC BiTE CEA × CD3 T cell recruitment Completed phase I,
NCT01284231

Gastrointestinal adenocarcinomas

MDX447 Dartmouth-Hitchcock Medical
Center

2 (Fab’) was
crosslinked

CD64 × EGFR Active monocytes to kill tumor Completed phase I,
NCT00005813

Brain and central nervous system
rumors

TF2 Garden State Cancer Center at the
Center for Molecular Medicine and
Immunology

Dock and lock CEA × HSG Enzyme-linked immunosorbent
assay

Phase I, NCT00895323 Colorectal cancer

Centre René Gauducheau Radioimmunotherapy Phase I/II, NCT01221675 Small cell lung cancer

Nantes University Hospital Immuno-PET Phase I/II, NCT01730638 Recurrences of medullary thyroid
carcinoma

Nantes University Hospital Immuno-PET Phase I/II, NCT01730612
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Table 1 Bispecific antibodies in clinical trials. Information from ClinicalTrials.gov (https://clinicaltrials.gov) (Continued)

HER2 negative breast carcinoma
expressing CEA

Radboud University Radioimmunotherapy Completed phase I,
NCT00860860

Colorectal neoplasms

rM28 University Hospital Tuebingen Tandem scFv CD28 × HMV-
MAA

Retargeting autologous
lymphocytes to tumor

Phase I/II, NCT00204594 Malignant melanoma

HER2Bi-aATC Barbara Ann Karmanos Cancer
Institute

T cells preloaded with
bsAbs

CD3 × HER2 Activated T cells Phase I, NCT02470559 Ovarian, fallopian tube, or primary
peritoneal cancer

GD2Bi-aATC Barbara Ann Karmanos Cancer
Institute

T cells preloaded with
bsAbs

CD3 × GD2 Activated T cells Phase I/II, NCT02173093 Children and young adults with
neuroblastoma and osteosarcoma

Barbara Ann Karmanos Cancer I
nstitute

Completed phase I,
NCT00938626

Multiple myeloma and plasma cell
neoplasm

Barbara Ann Karmanos Cancer
Institute

Completed phase 1,
NCT00244946

NHL

EGFRBi-aATC Barbara Ann Karmanos Cancer
Institute

T cells preloaded with
BsAb

CD3 × EGFR Autologous activated T cells to
EGFR-positive tumor

Phase I/II, NCT02521090 Adult brain glioblastoma; adult
gliosarcoma; recurrent brain
neoplasm

MGD006 MacroGenics DART CD123 × CD3 Retargeting of T cells to tumor Phase I, NCT02152956 Relapsed/refractory AML

MGD007 MacroGenics DART gpA33 × CD3 Retargeting of T cells to tumor Phase I, NCT02248805 Colorectal carcinoma

MGD010 MacroGenics DART CD32B × CD79B Phase I, NCT02376036 Healthy subjects

Anti-CEAxanti-DTPA Nantes University Hospital scFv-IgG CEA × di-DTPA-
131I

Radioimmunotherapy Complete phase II,
NCT00467506

Medullary thyroid carcinoma

DT2219ARL Masonic Cancer Center 2 scFv linked to
diphtheria toxin

CD19 × CD22 Targeting of protein toxin to
tumor

Phase I, NCT00889408 Leukemia; lymphoma

Masonic Cancer Center Phase I/II, NCT02370160 Relapsed or refractory B lineage
leukemia or lymphoma

IMCgp100 Immunocore Ltd ImmTAC CD3 × gp100 T cell recruitment Phase I, NCT01211262 Malignant melanoma

Phase I, NCT02570308 Uveal melanoma

Indium-labeled IMP-
205xm734

Radboud University Unclear CEA × in-labeled
Peptide

Nuclear imaging Phase I,NCT0018508 Colorectal cancer

LY3164530 Eli Lilly and Company OrthoFab-IgG MET × EGFR Blockade of 2 receptors Phase I, NCT02221882 Neoplasms; neoplasm metastasis

OMP-305B83 OncoMed Pharmaceuticals, Inc. DVD-Ig DLL4 × VEGF 2-ligand inactivation Phase I, NCT02298387 Advanced solid tumor malignancies

REGN1979 Regeneron Pharmaceuticals Unclear CD20 × CD3 T cell recruitment Phase I, NCT02290951 CD20+ B cell malignancies

COVA322 Covagen IgG-fynomer TNF-α × IL17A Blockade of two proinflammatory
cytokines

Phase I/II, NCT02243787 Plaque psoriasis

RG7802 Hoffmann-La Roche CrossMab CEA × CD3 T cell recruitment Phase I, NCT02324257 Solid cancers

RG7813 (RO6895882) Hoffmann-La Roche ScFv-IgG CEA × IL2 The delivery of cytokines Phase I, NCT02004106 Advanced and/or metastatic solid
CEA+ tumors

RG7221 (RO5520985) Hoffmann-La Roche CrossMAb Ang-2 × VEGF 2-ligand inactivation Phase II, NCT01688206 Neoplasms
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Table 1 Bispecific antibodies in clinical trials. Information from ClinicalTrials.gov (https://clinicaltrials.gov) (Continued)

RG7716 Hoffmann-La Roche CrossMAb VEGF × Ang-2 2-ligand inactivation Phase II,NCT02484690 Wet AMD

MM-111 Merrimack Pharmaceuticals HSA body HER2 × HER3 Blockade of 2 receptors Completed phase I,
NCT01097460

Breast neoplasms

Merrimack Pharmaceuticals Blockade of 2 receptors Completed phase I,
NCT00911898

Her2-amplified solid tumors

MM-141 Merrimack Pharmaceuticals scFv-IgG IGF-IR × HER3 Blockade of 2 receptors Phase I, NCT01733004 Hepatocellular carcinoma

Phase II, NCT02399137 Pancreatic cancer

MOR209/ES414 Emergent Product Development
Seattle LLC

scFv-IgG PSMA × CD3 T cell recruitment Phase I, NCT02262910 Prostate cancer

TargomiRs University of Sydney Unclear EGFR × EDV Delivery of nanoparticles Phase I, NCT02369198 Recurrent MPM and NSCLC

MSB0010841 Merck KGaA Nanobody IL-17A/F Blockade of 2 proinflammatory
cytokines

Phase I, NCT02156466 Psoriasis

ALX-0061 Ablynx Nanobody IL-6R × HSA Blockade of proinflammatory
cytokine, binds to HSA to
increase half-life

Completed phase I/II,
NCT01284569

Rheumatoid arthritis

Ozoralizumab (ATN-
103)

Ablynx Nanobody TNF × HSA Blockade of proinflammatory
cytokine binds to HSA to
increase half-life

Completed phase II,
NCT01063803

Rheumatoid arthritis

AFM13 University of Cologne TandAb CD30 × CD16A Active NK cells Phase II, NCT02321592 Relapsed or refractory Hodgkin
lymphoma

AFM11 Affimed GmbH TandAb CD30 × CD19 Redirecting of T cells Phase I, NCT02106091 Relapsed and/or refractory CD19-
positive B cell NHL

SAR156597 Sanofi scFv-IgG IL4 × IL13 Blockade of proinflammatory
cytokines

Completed phase I/II,
NCT01529853

Idiopathic pulmonary fibrosis

Sanofi Phase II, NCT02345070 Idiopathic pulmonary fibrosis

bsAb bispecific antibody, ALL lymphoblastic leukemia, NHL non-Hodgkin lymphoma, wet AMD wet type age-related macular degeneration, MPM malignant pleural mesothelioma, NSCLC non-small-cell lung cancer

Fan
et

al.Journalof
H
em

atology
&
O
ncology

 (2015) 8:130 
Page

4
of

14



IgG-like formats

1. Quadromas
The quadroma technology relies on the fusion of
two distinct hybridomas. The random pairing of Ig
heavy and light chains gives rise to bsAbs [9]. In this
process, nonfunctional antibodies are also produced.
BsAbs produced by quadromas resemble conventional
antibodies. Catumaxomab, the first approved bsAb, is
produced by a rat/mouse quadroma cell line.

2. Knobs-into-holes
The production of bsAbs with an Fc region poses
some challenges such as the formation of
undesirable homodimers and other product-related
contaminants including mispaired molecules. The
“knobs-into-holes” approach has been adopted to
tackle these problems by substituting a large amino
acid for a small one in the CH3 domain (the “knob”)
of one antibody and vice versa (the “hole”) of the
other antibody [10]. In theory, heterodimers of any
two different antibodies can pair in a “knob-and-
hole” fashion. However, “light chain mispairing”
poses another challenge. To circumvent this, several
methods have been proposed:
(a)Generating bsAbs with common light chains [11].

This strategy, however, limits binding specificities
and is not applicable to all bsAbs.

(b)Expressing the knob- and the hole-containing
half-molecules separately in different bacteria [6].
This method would avoid mispairing of the light
chains. However, expression in bacterial cells
can also result in the loss of key glycosylation
modifications, which may affect antibody effector
functions (e.g., antibody-dependent cellular
cytotoxicity mediated by carbohydrate-
dependent binding to Fcγ receptors) [12].

(c)Combining CrossMab and knobs-into-holes
strategies to minimize mispairing. In the Cross-
Mab antibody, the CH1 domain of the heavy
chain is swapped with the constant CL domain
of the corresponding light chain to induce the
right pairing of the light chains [13]. By combining
knobs-into-holes and CrossMab, Roche generated
the bsAb A2V CrossMab with dual specificities for
Ang-2 and VEGFA [14].

(d)Introducing additional mutations into VH-VL
and CH1-CL interfaces. These mutations encour-
age a heavy chain to preferentially pair with a
light chain [15]. One drawback, however, is that it
requires extensive mutations in the conserved re-
gions of the antibody.

3. Dual-variable domains Ig (DVD-Ig)
The variable domains of two mAbs are fused in
tandem to create a dual-specific IgG-like molecule

[16]. Each Fab of the DVD-Ig binds to two targets.
In theory, any pair of mAbs can be used to generate
a DVD-Ig molecule. The resulting specific antibodies
could be further modified to create molecules with
variable valencies and specificities. This technology
avoids mispairing of different heavy or light chains,
and it improves product homogeneity, yield, and sta-
bility. Additionally, the Fc domain facilitates efficient
purification. However, there is a potential risk that
the binding affinity of the inner variable domain may
be reduced [17].

4. IgG-single-chain Fv (scFv)
IgG-scFv is generated by fusing an scFv or a variable
single domain to the termini of light or heavy
chains. This group of antibodies also includes
DVD-Igs.

5. Two-in-one or dual action Fab (DAF) antibodies
Antigen-binding sites of DAF antibodies are capable
of dual antigen recognition [18]. To achieve this, a
template antibody binding to a target antigen is first
identified. A mutation is then introduced into the
antigen-binding site to recognize a second antigen.
Further engineering within the antigen-binding site
is needed to facilitate high dual affinity. However,
two-in-one antibodies are not capable of binding to
two different antigens (epitopes) simultaneously.

6. Half-molecule exchange
Human IgG4 antibodies can exchange half-
molecules in the serum, leading to the generation of
IgG4 bsAbs by a strategy termed “half-molecule
exchange.” After the introduction of point mutations
into the IgG1 CH3 domain, IgG1 antibodies can
undergo half-molecule exchange under controlled
conditions to become bsAbs [19]. This strategy also
applies to human IgG2 and IgG3. The foremost
advantage of this method is the separate expression
of the parental IgGs, thereby increasing the repertoire
of parental antibodies to generate different bsAbs.
Thus, this method is an elegant way to produce
numerous bsAbs in a short period. Moreover, human
bsAbs produced by half-molecule exchange are in
their natural formats, with low immunogenicity.

7. κλ-bodies
One heavy chain and two different light chains (one
κ and one λ) with different binding specificities can
be co-expressed in a single cell. In this way, bsAbs
with both κ and λ light chains paring with the same
heavy chain can be produced [20] and then purified
by highly selective affinity resins. The advantages of
κλ-bodies are obvious: firstly, the bsAbs retain the
complete human IgG format without modification;
secondly, the bsAbs can be easily purified from the
mixture of antibodies; thirdly, the bsAbs can be
produced at an industrial scale; and finally, the

Fan et al. Journal of Hematology & Oncology  (2015) 8:130 Page 5 of 14



purification platform can be applied to any κλ-body,
thus facilitating parallel development of different
bsAbs [20].

Non-IgG-like formats

1. scFv-based bsAbs
ScFv comprising only the VL and VH is the basic
element for antigen binding. ScFvs can become
dimers, trimers, or tetramers depending on linker
length, antibody sequence, and external factors [21].
Compared to normal IgG molecules, scFvs exhibit
high tumor specificity and tissue penetration; thus,
scFv-based bsAbs are favored and have several pos-
sible clinical applications.
(a)Tandem scFvs

Two scFvs are connected by a flexible peptide
linker such as glycine-serine repeat motifs in a
tandem orientation [7]. The short linker prevents
intra-chain but not inter-chain pairing of the VH
and the VL domains. The long flexible linker
permits antigen-binding sites to rotate freely. The
famous bispecific T cell engager (BiTE) technology
is based on this format.

(b)Diabody format
In the diabody format, the variable domains of
two different antibodies are connected by two
linkers. The VH of the first antibody is linked to
the VL of the second antibody, and the VL of the
first antibody is linked to the VH of the second
antibody. The two linkers increase the stability of
the diabody. However, there are trade-offs as the
two linkers restrict the mobility of the antigen-
binding sites, thus limiting antigen recognizing.

(c)Single-chain diabodies
The diabody format can be converted into a
single-chain diabody by adding an additional
connection linker between the chains.

(d)Tandem diabodies (TandAbs)
When two pairs of VL and VH domains are
connected in a single polypeptide chain, a
tetravalent tandAb is formed.

(e)Dual-affinity retargeting molecules (DARTs)
DARTs are created by the association of the VH
of a first variable region linked to the VL on a
second chain, and the VH of the second variable
region linked to the VL on the first chain in a
VLA −VHB + VLB −VHA configuration [22]. An
inter-chain disulfide bond is introduced to
stabilize the diabody [22]. The small size of
DARTs makes them prone to elimination. To
avoid this, MacroGenics fused an Fc fragment
to the DARTs to prolong their serum retention
time [23].

2. Nanobodies
Nanobodies are the smallest naturally occurring
antibodies and consist only of a heavy chain
(15 kDa) [24]. A nanobody can bind to the
corresponding antigen in the absence of a light
chain. Nanobodies with different binding specificities
obtained from llamas and camels have been
connected with short linkers to create bsAbs [25].

3. Dock-and-lock (DNL) method
In this method, antibody fragments are fused to
heterodimerizing proteins such as cAMP-dependent
protein kinase A (PKA) and A kinase-anchoring
protein (AKAP). When the proteins heterodimerize,
bispecific molecules are generated [26].

4. Other bispecific/multispecific molecules
ScFvs can also be connected to other molecules
such as cytokine TNF-α (TNF-α naturally exists in
trimeric form) and the trimerization domain of
collagen XV or XVIII as well as zipper dimerization
domains (Fos or Jun) to generate multivalent
molecules [6].

Half-life extension strategies
ScFv-based bsAbs have many advantages including ease
of manufacturing and enhanced tissue penetration. Add-
itionally, they can bind to epitopes that may be sterically
inaccessible to antibodies in complete IgG format. Fur-
ther, they are less immunogenic owing to the lack of an
Fc region, thus avoiding uptake by FcR. However, scFv-
based bsAbs suffer from several drawbacks due to their
short half-lives, such as rapid blood clearance, fast off-
rates, and poor retention times in targeted sites (e.g.,
tumors). In clinical applications, a short serum half-life
increases the number of applications and the doses of
therapeutic agents [27]. Thus, extension of the serum
half-life can be both economically and therapeutically
beneficial. Several strategies are available to extend
serum half-lives of bsAbs, such as:

1. Polyethylene glycol (PEG)ylation
Attaching highly flexible, hydrophilic molecules,
such as PEG, will increase the hydrodynamic
volume of the bsAbs, thus improving their serum
half-lives. However, the number and size of attached
PEG chains can lead to partial inactivation or
decreased binding affinity of the antibodies [28].
Conjugating a single PEG chain using a site-directed
approach appears to be an ideal strategy [27].

2. Fusion with human serum albumin (HSA) or an
albumin-binding moiety
Fusion of scFvs to HSA or an albumin-binding
moiety can prolong their serum half-lives. Additionally,
HSA interacts with FcRn without altering the antigen-
binding affinity. This strategy has been widely adopted
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by antibody engineers. Albumin fusion/binding does
not only increase the molecule size, but it also
promotes recycling of the bsAbs, extending their half-
lives. Albumin taken up by cells will first bind to the
FcRn of the early endosome, thus escaping degradation.
Then, albumin is redirected to the plasma membrane
and released back into the blood plasma [27].
Merrimack Pharmaceuticals developed MM-111
bsAb by binding scFvs to HSA. Ozoralizumab
(ATN-103, Ablynx) is a trivalent bispecific
nanobody derived from a camelid heavy chain with
a molecular weight of 38 kDa. In theory, molecules
of such small size are easily eliminated by the
kidneys. To address this problem, ozoralizumab
has been designed to bind to HSA while retaining
its binding specificity for TNF-α [29].

3. Fc fragment fusion
Some antibody engineers fuse an Fc fragment to
scFv-based bsAbs. The Fc fragment not only
improves the molecule size, but it also promotes
recycling through FcRn. MacroGenics developed
Fc-bearing DART MGD007 for patients with colon
cancer.

4. Multimerization
Multimerization is another strategy to optimize the
half-life by modulating the sizes and the binding
values of a bsAb.

Clinical applications of bsAbs
BsAbs redirecting immune effector cells to the proximity
of tumor cells
Cytotoxic T lymphocytes play an important role in the
immune response against cancer [30]. However, tumor-
specific T cell responses are limited by immune escape
mechanisms utilized by tumor cells during immunoedit-
ing. Progress in immunotherapy over the past years has
allowed overcoming this challenge. One strategy to har-
ness the immune cells is to take advantage of bsAbs to
kill tumor cells. Several bsAbs in clinical development
are designed to redirect T cells to tumor cells [31]. This
process is accompanied by the formation of a transient
cytolytic synapse between the T cell and the targeted
tumor cell. The subsequent activation and proliferation
of T cells leads to tumor cells lysis [32]. Besides T cells,
other immune cells such as macrophages, monocytes,
granulocytes, and natural killer (NK) cells also exert
tumor-killing effects. A number of bsAbs including Trio-
mab, BiTE, DART, and FynomAb provide new treatment
options for patients.

1. Triomab antibodies redirecting T cells to tumor cells
Triomab antibodies are produced with high yield
and purity by mouse-rat hybridomas. The desired
bsAbs are mixed with by-products such as

monospecific antibodies, and L-chain mispairing
further complicates purification. Given the fact that
light (heavy) chains from rat and mouse associate
preferentially, L/H-chain mispairing can be reduced
to 4–10 % [33]. The bsAbs are easily purified by
protein A [5]. Triomab antibodies are trifunctional,
with one arm binding to tumor-associated antigen,
the second arm binding to CD3 on T cells, and the
chimeric Fc region preferentially recognizing type I
(CD64), IIα (CD32a), III Fcγ (CD16) receptor (FcγR)
on accessory cells such as macrophages, dendritic
cells, and NK cells. T cells are then activated,
accompanied by the release of T cell cytokines such
as TNF-α and IFN-γ. Additionally, FcγR-positive
accessory cells are redirected to tumor cells with the
release of high levels of proinflammatory cytokines
such as IL-6, IL-12, GM-CSF, and DC-CK1 [34].
Tumor cells are killed through T cell-mediated lysis
and ADCC as well as through phagocytosis by
activated accessory cells [9] (Fig. 2).
Catumaxomab belongs to the Triomab family and
was the first bsAb to be approved for cancer
treatment. It is produced by co-expression of rat
IgG2b and mouse IgG2a in a single host cell.
Compared to the BiTE, the IgG-like bsAb has a
longer serum half-life. Patients receive intraperitoneal
infusion of 10–150 μg four to five times over 9–13 days
[8]. Most patients develop a tolerable humoral
immune response against catumaxomab. This anti-
drug response correlates with a favorable clinical
outcome. This protection relies on the presence of the
chimeric Fc domain of catumaxomab, which evokes
an immunogenic reaction [9]. Potential adverse events
suffered by patients include transient fever, nausea,
and vomiting. Most adverse events may be attributed
to cytokine-release-related symptoms and are
reversible [9]. Catumaxomab is approved in the
European Union for EpCAM-positive carcinoma
patients for whom standard therapy is not feasible.
Catumaxomab is currently in clinical trials for
application to ovarian cancer, gastrointestinal
cancer, non-small cell lung cancer, breast cancer,
and peritoneal carcinomatosis [35].
Other Triomab members include ertumaxomab and
FBTA05. Ertumaxomab targets HER2/neu, a
validated breast tumor biomarker. By retargeting T
cells to HER2/neu-overexpressing cells, ertumaxomab
can kill tumor cells with low surface expression of
HER2/neu as well [36]. In a phase I study, five out of
15 metastatic breast cancer patients receiving
ertumaxomab treatment showed an antitumor
response [37]. FBTA05 specifically binds to CD20 on B
cells and CD3 on T cells and is in phases I–II trials in
patients with CD20-positive B cell malignancies [38].
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2. BiTEs redirecting T cells to tumor cells
The BiTE platform is utilized to develop tandem
scFv bsAbs. Blinatumomab binds to CD3 on T cells
and CD19-expressing B cell malignancies [39]. It is
the first bsAb approved by the US Food and Drug
Administration (FDA) for acute B cell lymphoblastic
leukemia and has a small size of 55 kDa [40].
Additionally, it is in phases II and III for acute
lymphoblastic leukemia (ALL), phase II for diffuse
large B cell lymphoma (DLBCL), and phase I for
non-Hodgkin lymphoma (NHL). Blinatumomab
shows potent tumor-killing capacity by redirecting T
cells to tumor cells (Fig. 3). The resulting influx of
various granzyme proteases provide essential
components for the cytolytic synapse formed
between the T cells and target cells [41]. Meanwhile,
T cells begin to proliferate and release cytokines
such as TNF-α, IFN-γ, IL-6, IL-2, IL-4, and IL-10
[42]. The BiTE molecule is quite potent in redirecting
T cells to CD19 positive lymphoma cells at very
low concentrations of 10 to 100 pg/ml. Doses
of >15 μg/m2/day lead to the depletion of tumor
cells in vivo. Blinatumomab has a serum half-life of
less than 2 h. Patients receive the BiTE infusion via
an implanted port system and have to stay under
observation for 3–7 days. The treatment resulted in

an impressive 43 % complete response rate and a
median overall survival of 6.1 months in a phase II
trial in patients with high-burden relapsed or
refractory B cell ALL (B-ALL) [23]. Blinatumomab
has some disadvantages, as some patients suffer
from neurotoxicity and show symptoms of
cytokine-release syndrome [23]. Due to its small
size, blinatumomab can be easily eliminated by the
kidneys, and patients need to change the infusion
bag every 48 h [32]. It should be noted that some
patients receiving blinatumomab develop drug
resistance [43]. The underlying mechanisms
include, but are not limited to, loss of CD19,
extramedullary relapse, and upregulation of
programmed death-ligand 1 on tumor cells [43].
Besides blinatumomab, some other BiTEs such as
solitomab (anti-CD3 × EpCAM, completed
phase I for solid tumors), MEDI-565 (anti-CD3 ×
CEA, completed phase I for gastrointestinal
adenocarcinoma), and BAY2010112 (anti-CD3 ×
PSMA, phase I for prostate cancer) are also under
investigation [44].

3. DARTs retargeting T cells to tumor cells
The DART technology is used to produce bsAbs
with increased stability and reduced immunogenicity
owning to minimal linker size. Unlike BiTEs, the

Fig. 1 Molecular formats of bispecific antibodies
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covalent linkage between the two chains of DARTs
limits the freedom of the antigen-binding sites.
Therefore, DARTs are structurally compact and can
form stable contacts between target and effector
cells. Moore et al. demonstrated the CD19 × CD3
DART to be more potent than the BiTE molecule in
redirected killing of B cell lymphoma [22]. This may
be explained by the fact that the binding affinity of
the DART format for CD3 is higher and the
dissociation rate constant for CD19 is lower [45].
However, with only one study conducting a
side-by-side comparison available, it is hard to
conclude which format is better. More clinical
trials are needed to assess the superiority between
the DART and BiTE formats [45]. However, Moore
et al. demonstrated that DART could be an
alternate T cell activator.
Both mammalian and prokaryotic systems can be
used for antibody expression. To date, more than 70
DART products have been generated [5]. Various
mechanisms including activation of tumor-killing
effector cells, targeting of receptors or cytokines,
and binding to pathogenic epitopes are involved in
DARTs function. Two products are currently in
clinical trials. MGD006 is designed to treat acute
myeloid leukemia (AML) by redirecting T cells to
kill leukemic cells [46]. It has two specific targeting
arms: one for CD123 on leukemic stem cells and the
other one for CD3 on T cells. Currently, MGD006 is
in phase I in patients with AML.

Unlike MGD006, MGD007 belongs to the Fc-
bearing DARTs. Evidently, the fusion of the Fc
fragment avoids easy clearance and prolongs the
serum retention time by FcRn-dependent recycling.
MGD007 redirects T cells to gpA33-positive colon
cancers and mediates potent lysis of gaA33-positive
cells [47]. It is now in phase I trial in patients with
colorectal cancer.

4. TandAbs redirecting immune cells to kill tumor
TandAbs comprise four binding sites without an Fc
fragment. Larger than BiTEs, they have a molecular
weight of about 114 kDa [48]. Therefore, they have
longer serum half-lives than BiTEs and diabodies.
TandAbs can be produced in bacterial and mammalian
cells. A major difference with BiTEs is that TandAbs
exhibit bivalent binding activity for each specificity—an
important means to increase target-binding affinity.
They are effective at retargeting immune cells to tumor
cells and inducing cell lysis.
AFM13 is a tetravalent bsAb with a murine anti-
CD30 domain. It specifically targets CD16A on NK
cells and macrophages [49]. CD16A is an activating
receptor involved in tumor-cell killing. In Hodgkin’s
patients, CD30 is highly expressed by Hodgkin and
Reedsternberg cells. AFM13 recruits and activates
NK cells to induce lysis of CD30-positive tumor
cells. Dose-limiting toxicity such as hemolytic
anemia may be seen in patients receiving AFM13.
Further, an anti-drug response has been observed in
some patients [49]. Currently, AFM13 is in clinical

Fig. 2 Triomab® antibodies redirect T cells and other accessory cells to a tumor cell

Fan et al. Journal of Hematology & Oncology  (2015) 8:130 Page 9 of 14



phase II in patients with Hodgkin’s disease. Unlike
AFM13, AFM11 redirects T cells to CD19 positive
lymphomas. AFM11 is in clinical phase I trial in
patients with non-Hodgkin’s lymphoma and ALL.

BsAbs blocking signaling pathways
As a subclass of cell-surface growth factor receptors, re-
ceptor tyrosine kinases (RTKs) are critically involved in
oncogenesis [50]. Several monospecific RTK-targeting
antibodies including herceptin (for metastatic breast
cancer), imatinib (for CML and GIST), gefitinib (for
NSCLC), and cetuximab (for colorectal cancer) have
been approved for cancer therapeutics [50]. However,
multiple signaling pathways exerting unique or overlap-
ping functions are involved in pathogenesis. Thus, sim-
ultaneously neutralizing two targets with one molecule
exhibits unique appeal and offers better treatment
potential than mAbs.

1. HSA body bsAbs
MM-111 is a bsAb with two scFvs fused to modified
HSA [51]. It targets the HER2/HER3 signaling
pathways simultaneously. HER2 is a validated target

for numerous cancers. HER3 signaling is an
important mechanism of drug resistance to HER2
inhibitor. Dual targeting of HER2/HER3 can lead to
a more effective response. MM-111 alone or with
trastuzumab is in clinical trials in patients with
HER2-postitive solid tumors [27].

2. ScFv-IgGs
MM-141 is another bsAb targeting the insulin-like
growth factor I receptor (IGF-IR) and HER3. Unlike
MM-111, MM-141 is an IgG-like bsAb with two
scFvs fused to the constant region of an IgG. Both
IGF-IR and HER3 activate the PI3K/AKT/mTOR
axis—a mechanism for targeted resistance. MM-141
binds to IGF-IR and HER3, thus blocking the down-
stream resistance mechanism [52]. MM-141 is
currently in phase I study in patients with hepatocel-
lular carcinoma.

3. Two-in-one antibody
Duligotuzumab is a two-in-one (DAF) phage-derived
humanized antibody. It binds to EGFR and HER3,
resulting in the inhibition of the downstream
signaling pathways of HER-family [53]. Deregulated
EGFR- and HER3-dependent signaling is involved in

Fig. 3 BiTE® antibodies redirect T cells to a tumor cell
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the pathogenesis of human cancers such as head and
neck and colorectal cancers. Patients who receive
EGFR inhibitor cetuximab treatment often develop
anti-EGFR resistance. When used in combination
with radiation, duligotuzumab overcomes drug
resistance and enhances the effects of radiation.
Currently, duligotuzumab is in clinical trials in
patients with epithelial tumors and neck squamous
cell carcinoma. Duligotuzumab exhibited similar
antitumor activity as cetuximab in a phase II study
in patients with recurrent or metastatic neck squamous
cell carcinoma [54]. It should be noted that patients
receiving duligotuzumab are at high risk of adverse
effects such as febrile neutropenia, hypokalemia,
nausea, and dehydration [55].

BsAbs targeting tumor angiogenesis
Angiogenesis is a key process in tumor growth and me-
tastasis. Multiple angiogenic factors including endothe-
lial growth factor receptor 2 (VEGFR2), VEGFR3,
endothelial growth factor A (VEGFA), angiopoietins,
and platelet-derived growth factors (PDGFs) are in-
volved in tumor angiogenesis. Many cancer therapies
disrupt angiogenesis by depleting these proteins [56].
Dual targeting of angiogenic factors leads to superior
outcomes [57].
RG7221 is a human IgG1-like CrossMab targeting two

key angiogenic factors, VEGFA and angiopoietin-2 (Ang-2).
In preclinical models, RG7221 strongly inhibited angiogen-
esis and tumor growth, with superior effect as comparing
to single-pathway inhibitors [14]. Currently, RG7221 is in
phase II study in patients with colorectal cancer. According
to clinical data from the phase I study, patients receiving
RG7221 treatment may suffer from hypertension, asthenia,
headache and fatigue [14].
RG7716 is a similar CrossMab, which was also de-

signed to block VEGFA and Ang2, and is in phase II
study in patients with wet type age-related macular de-
generation (wet AMD).

BsAbs blocking cytokines
Several cytokines have been identified as key mediators
of inflammatory and autoimmune diseases [58]. There-
fore, blockage of these cytokines has treatment potential.
For example, the inhibition of TNF-α exerts profound
therapeutic effects on psoriasis, psoriatic arthritis,
Crohn’s disease, ulcerative colitis, juvenile arthritis, and
many other diseases [59]. Other validated cytokines in-
clude IL-6, IL-17, IL-1, IL-12, TGF-β, IL-4, and IL-13.
[59–62].

Nanobodies
Ozoralizumab (ATN-103) is a small trivalent, bispecific
nanobody developed by Ablynx with high affinity for

TNF-α and HSA. Albumin binding increases its serum
half-life [63]. Ozoralizumab completed phase II clinical
trial in patients with rheumatoid arthritis (RA), and it
showed significant improvement in RA. Ozoralizumab
exhibits specific molecular features such as small size,
low immunogenicity, and long serum half-life, making it
appealing for clinical applications.
Similar nanobodies developed by Ablynx include ALX-

0061 against IL-6R/HSA for RA and ALX-0761 against
IL-17A/F for inflammatory disease [64, 65].

SAR156597
SAR156597 is a tetravalent bispecific tandem IgG that
simultaneously binds to IL-13 and IL-4. Structurally,
SAR156597 is an IgG molecule (anti-IL4 antibody) with
its N terminus fused to the variable domain of an anti-
IL13 antibody [66]. It has completed phase I/II clinical
investigation for idiopathic pulmonary fibrosis [67].

BsAbs as delivery vehicles
An interesting application of bsAbs is the delivery of
payloads such as drugs, radiolabels, and nanoparticles.
The payloads are administered once the unbound bispe-
cific molecules are cleared from the bloodstream. Bispe-
cific molecules can be used to enrich payloads in tumor
sites [26, 68–70]. This strategy significantly prolongs the
serum retention time and improves the tumor/blood
ratio.

DNL
The bispecific TF2 built made by the DNL method is
used for tumor imaging and radioimmunotherapy. It
specifically binds to CEA and 99mT-labeled hapten
histamine-succinyl-glycine (HSG). In the preclinical
trial, TF2 was first injected, and 99mT-labeled HSG was
then administered after the clearance of the bsAb from
the blood. A high tumor/blood ratio was observed with
high tumor uptake of 99mT. At present, TF2 is in phase
I study in patients with colorectal cancer [71]. Other
applications of TF2 include targeting against 177Lu

HSG/111InHSG and CEA for radioimmunotherapy in
patients with colorectal neoplasms and targeting
against 68GaHSG and CEA for immuno-positron emis-
sion tomography.

BsAbs in preclinical development

1. BsAbs crossing the blood-brain barrier
A promising application of bsAbs is to cross the
blood-brain barrier (BBB) to target pathogenesis
mediators in neurological diseases [72]. The BBB
forms a forbidden zone for monospecific antibody
therapy. Couch et al. designed a bsAb that binds to
transferrin receptor (TfR) and β-site APP-cleaving
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enzyme 1 (BACE1) to overcome this hurdle [73].
TfR is highly expressed on the surface of brain
endothelium. BACE1 is an aspartyl protease that
contributes to the pathogenesis of Alzheimer’s
disease, and targeting BACE1 has been a long-
sought-after strategy for treating Alzheimer’s disease
[74]. After binding to TfR, the circulating bsAb is
transported into the brain via receptor-mediated
transcytosis. The affinity between the bsAb and TfR
is weak; therefore, bsAb can be released from the
endothelium and enter the brain to target disease
mediator BACE1 with the other binding arm. A
preclinical study showed that the bsAb could alleviate
disease syndromes [74]. Several other bsAbs are being
developed to cross the BBB via transferrin receptor-
mediated transcytosis [72].

2. BsAbs for diagnostic assays
BsAb can be used in diagnostic assays. Typically, a
bsAb is designed to bind a specific antigen and a
detecting moiety such as horseradish peroxidase.
Therefore, bsAb can function as a cross-linker,
binding an antigen and reporter molecules simultan-
eously. In an immunoassay, a monospecific capture
antibody is immobilized onto a solid surface and
binds to the corresponding antigen in serum. BsAb
is then added to bind the captured antigen and a
reporter molecule. Such bsAb-based immunoassays
have been applied in patients infected with tuberculosis,
hepatitis B, Escherichia coli, Bordetella pertussis, SARS,
and other infectious diseases [75]. Additionally, bsAbs
have been used in other diagnostic applications such as
immunohistochemistry and radioimmunodiagnosis
[76]. Compared to monospecific antibodies, bsAbs
simplify diagnostic assays and reduce false-positive
reactions [76, 77]. BsAb-based diagnostics specifically
detect bacterial or viral antigens, instead of antibodies,
thereby enabling early-stage detection.

3. BsAbs for the treatment of pathogens
Due to the overusing broad-spectrum antibiotics,
many pathogenic strains have become antibiotic
resistant, and some have even become resistant to
multiple antibiotics and chemotherapeutic agents.
The rise of multi-drug resistance poses a major
threat to the development of new antibiotic classes.
The development of bsAbs offers a strategy to
overcome this problem. Recently, a study reported
the effectiveness of a new bsAb, BiS4αPa, to treat
Pseudomonas aeruginosa infections [78]. P. aerugi-
nosa remains a significant contributor to hospital-
acquired pneumonia and mortality in patients with
cystic fibrosis. Antibiotics against single epitopes of
P. aeruginosa are ineffective due to drug resistance.
The bispecific BiS4αPa was designed to bind to Psl,
an extracellular polysaccharide that plays an

important role in immune evasion and biofilm
formation, with one binding arm, and to PcrV, a
component involved in the secretion of virulence
factors, with the other binding arm. The superior
protective activity of BiS4αPa was proven in an
animal study, and BiS4αPa is now a clinical
candidate for the treatment of P. aeruginosa [79].
Besides BiS4αPa, various other bsAbs have been
developed to redirect cytotoxic T lymphocytes to kill
HIV [80], protect against HBV infection [81], or
promote the clearance of bacteriophages [82].

Conclusions
BsAbs can not only bridge therapeutics (e.g., T cells,
drugs) and targets (e.g., tumor) but also simultaneously
block two different pathogenic mediators [83]. In the
near future, bsAbs might improve treatment options
against cancer, autoimmune diseases, and inflammatory
diseases. Two bsAbs have been approved with an im-
pressive treatment profile. The success of bsAbs has cap-
tured the attention of pharmaceutical companies, with
different companies devising new formats.
Success aside, several critical hurdles remain, as only

few formats have successfully moved into clinical trials.
Large-scale production and purity are long-term pur-
suits. The ideal platform should encompass the entire
development process from discovery and preclinical
studies to clinical material production, to allow rapid
discovery of potent lead bsAbs and purification of
clinical-grade bsAbs in a short time. Thus, simplifying
the structure and production procedure and utilizing a
powerful production platform are the keys when design-
ing a bsAb format. The identification of target pairs and
bsAbs with potential synergistic effects also poses a big
challenge, necessitating a high-throughput approach.
Moreover, immunogenicity is a complex issue in drug
design and development. In clinical trials, adverse effects
are often reported and hamper the success of bsAbs. For
example, toxicity of the bispecific 4G7 ×H22 leads to
the termination of its clinical study (https://clinical
trials.gov/ct2/show/NCT00014560). Most adverse effects
are mainly caused by a “cytokine storm.” With the devel-
opment of bsAbs, there is hope for the availability and
approval of more therapeutic alternatives in future.
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