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Abstract

Long non-coding RNAs (lncRNAs) govern fundamental biochemical and cellular processes. lncRNA HOX transcript
antisense RNA (HOTAIR) represses gene expression through recruitment of chromatin modifiers. The expression of
HOTAIR is elevated in lung cancer and correlates with metastasis and poor prognosis. Moreover, HOTAIR promotes
proliferation, survival, invasion, metastasis, and drug resistance in lung cancer cells. Here we review the molecular
mechanisms underlying HOTAIR-mediated aggressive phenotypes of lung cancer. We also discuss HOTAIR’s
potential in diagnosis and treatment of lung cancer, as well as the challenges of exploiting HOTAIR for intervention
of lung cancer.

Keywords: lncRNA, HOTAIR, Lung cancer, PRC2, Metastasis
lncRNAs as novel master regulators of lung cancer
A surprising discovery of the ENCODE project is that
87.3% of the human genome is actively transcribed al-
though only < 3% of the human genome encodes proteins
[1]. One family of the non protein-coding RNAs is oper-
ationally defined as long non-coding RNAs (lncRNAs)
based on their length > 200 nucleotides [2]. As published
in GENCODE v7 (2012), the lncRNA catalogue comprises
9277 manually annotated lncRNA genes that produce
14,880 transcripts [3]. lncRNAs regulate fundamental bio-
chemical and cellular processes, such as gene expression,
RNA splicing, and ligand-receptor engagement, which
mediates pathogenesis of benign and malignant respira-
tory disorders [4,5].
lncRNAs have emerged as novel master regulators of

initiation, progression, and response to therapy in a wide
variety of solid tumors and hematological malignancies
[6,7]. Hundreds of IncRNAs have been associated with
lung cancer through gene expression microarrays and
massively parallel RNA sequencing of tumor tissues and
paired adjacent non-tumor tissues in the lung [8-11]. As
of September 2014, a PubMed search using lncRNA and
lung cancer as key words yielded more than a dozen of
lncRNAs that have been individually investigated in lung
cancer (Table 1) [8,12-38]. Despite their largely descriptive
and correlative nature, these reports highlight a critical
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role of lncRNAs in lung cancer. The investigated lncRNAs
regulate critical cellular processes in lung cancer, such as
proliferation, invasion, and survival (Table 1). Moreover,
dysregulated expression of these lncRNAs is correlated
with metastasis, advanced pathological stages, and poor
prognosis in patients with lung cancer (Table 1).
The lncRNA HOX Transcript Antisense RNA (HOTAIR)

has attracted intense investigation in lung cancer (Table 1)
[19-24,39]. Herein we review the literature of HOTAIR in
lung cancer with an emphasis on the molecular mecha-
nisms underlying its regulation of lung cancer. To obtain
comprehensive insight of HOTAIR in lung cancer, we in-
tegrate mechanistic studies of HOTAIR in other types of
cancer in our review.

Discovery of the HOTAIR gene
HOTAIR was discovered by Howard Chang’s group as a
lncRNA that recruits Polycomb Repressive Complex 2
(PRC2), a transcriptional co-repressor, to repress the ex-
pression of the homeobox gene D cluster (HOXD) [39].
The human HOTAIR gene resides within the intergenic
region between HOXC11 and HOXC12 in the HOXC
cluster on chromosome 12. The HOTAIR gene is tran-
scribed in an antisense direction relative to its flanking
HOXC11 and HOXC12 genes. Its principal transcript
(RefSeq NR_003716) is a 2364 bp RNA transcribed from
a 6449 bp gene locus and composed of 6 exons (Figure 1,
marked by an red open rectangle). An 89 bp fragment in
the 5′ end of HOTAIR (221–300 bp in RefSeq
NR_003716) binds to PRC2, and a 646 bp fragment in
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Table 1 Lung cancer-associated lncRNAs

lncRNA Intersecting molecules and pathways Cell processes Associated clinical features

AK126698 Reduces NKD2, activates β-catenin [12] Anti-apoptosis, resistance to
cisplatin [12]

Unknown

CARLo-5 Unknown Cell cycle, proliferation, invasion,
EMT [13]

↑ in NSCLC, lymph node metastasis,
poor survival [13]

CCAT2 Unknown Proliferation, migration, invasion [14] ↑ in LAC, lymph node metastasis [14]

H19 Induced by cigarette smoke [15,16] Unknown ↑ in NSCLC [17], poor survival [18]

HOTAIR Induced by Col-1 [19]. Affects expression
of gelatinases [20]. Represses cell-adhesion
genes [21], p21waf1 [22], and HOXA5 [23]

Proliferation, migration invasion
[20,21,23]; resistance to cisplatin
in vitro & in vivo [22]

↑ in NSCLC, lymph node and brain metastasis,
poor survival [19,20,23,24]. ↑ in cisplatin-refractory
LAC [22]. ↑ in SCLC, lymphatic invasion, relapse [21]

LCAL1 Unknown Proliferation [8] ↑ in NSCLC [8]

MALAT1 Affects expression of Bcl-2 [25] and
metastasis related genes [26]

EMT [27], tumor growth in vivo [26],
survival [25]

↑ in NSCLC, brain metastasis, poor survival [25,27].
↑in periphery blood of NSCLC [28]

MVIH Affects expression of MMP-2/-9 [29] Proliferation & invasion [29] ↑ in LAC and LSCC, advanced TNM stage, lymph
node metastasis, poor prognosis [29]

SCAL1 Induced by cigarette smoke
and NRF2 [30]

Protection against oxidative stress [30] ↑ NSCLC [8,30]

SOX2ot Affects expression of EZH2 [31] Cell cycle, proliferation [31] ↑ in LSCC, poor survival [31]

ZXF1 Antisense to ACTA2 [32] Migration & invasion [32] ↑ in LAC, lymph node metastasis, advanced
TNM stage, poor survival [32]

BANCR Inhibits the expression of EMT markers [33] Induces apoptosis, inhibits EMT,
migration, invasion, metastasis in
vivo [33]

↓ in LAC and LSCC, lymph node metastasis,
advanced TNM stage, poor survival [33]

GAS6-AS1 Antisense to and represses expression
of GAS6 [34]

Unknown ↓ in NSCLC, advanced TNM stage, poor survival [34]

MEG3 Induces p53 [35] Inhibits proliferation & growth
in vivo, pro-apoptosis [35]

↓ in NSCLC, advanced TNM stage, poor survival [35]

SPRY4-IT1 Intronic to SPRY4, silenced by EZH2 [36] Inhibits invasion, growth & metastasis
in vivo, induces apoptosis [36]

↓ in NSCLC, pathological stage, lymph node
metastasis [36]

TARID Activates TCF21 via GADD45A [37] Unknown ↓ in LAC and LSCC [37]

TUG1 Induced by p53, represses HOXB7
via PRC2 [38]

Inhibits proliferation & growth
in vivo [38]

↓ in NSCLC, advanced TNM stage, poor survival [38]

A summary of the lung cancer-associated lncRNAs and the molecular pathways, cell processes, and clinical features that are linked to these lncRNAs. See text for
details. CARLo-5: Cancer-associated region long non-coding RNA; CCAT2: colon cancer-associated transcript 2; HOTAIR: HOX transcript antisense RNA; LCAL1: lung
cancer associated lncRNA 1; MALAT1: Metastasis associated in lung adenocarcinoma transcript 1; MVIH: microvascular invasion in hepatocellular carcinoma; SCAL1:
smoke and cancer-associated lncRNA-1; SOX2ot: Sox2 overlapping transcript; BANCR: BRAF activated non-coding RNA; GAS6-AS1: GAS6 antisense RNA 1; MEG3:
Maternally expressed gene 3; SPRY4-IT1: SPRY4 intronic transcript 1; TARID: TCF21 antisense RNA inducing demethylation; TUG1: taurine-upregulated gene 1;
NSCLC: non-small cell lung cancer; SCLC: small cell lung cancer; LAC: lung adenocarcinoma; LSCC: lung squamous cell carcinoma.
↑ and ↓ indicate increase and decrease, respectively.
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its 3′ end binds to the LSD1/CoREST/REST complex
(Figure 2) [40,41]. PRC2 contains Enhancer of Zeste
Homolog 2 (EZH2), a histone methyltransferase that
marks a gene for transcriptional repression via tri-
methylation of histone H3 Lys27 (H3K27me3) [42].
HOTAIR appears to bind to GA-rich motifs in the
Figure 1 Isoforms of human HOTAIR transcripts. The USCS Genome Bro
the human HOTAIR transcript [47]. The principal transcript RefSeq NR_0037
that lack the PRC2-interacting domain and the LSD1-interacting domain ar
genome to nucleate broad domains of PRC2 occupancy
and consequent H3K27me3 [43]. The LSD1/CoREST/
REST complex contains Lysine-Specific Demethylase 1
(LSD1), a histone demethylase that inactivates gene ex-
pression via demethylation of the di-methylated histone
H3 Lys4 (H3K4me2), a histone modification that is
wser track of the human HOTAIR gene is used to illustrate isoforms of
16 and two multi-exon HOTAIR variants in the GENCODE catalogue
e marked by red open rectangles. See text for details.



Figure 2 Molecular mechanisms of the tumor-promoting actions of HOTAIR. The interactions between HOTAIR and its partners are
summarized. The length of each exon and positions of the interacting region for each partner are proportional to their length and positions in
the principal transcript RefSeq NR_003716 of the human HOTAIR gene. The introns are not drawn proportionally to their length. A green arrow
indicates positive regulation of the processes or substrates targeted by the arrow. A red arrow indicates negative regulation of the targeted
processes or substrates by the arrow. A red bi-directional arrow is used to illustrate the reciprocal negative regulation between HOTAIR and
miR-130a. HOTAIR’s interaction with E3 ubiquitin ligase Mex3b and its substrate Snurportin-1 is not included in the figure because the interaction
is mediated through the region that overlaps with the Dzip3-Ataxin-1 interacting domain in HOTAIR. See text for details. PRC2: Polycomb
Repressive Complex 2; EZH2: enhancer of zeste homolog 2; HuR: Human antigen R; LSD1: Lysine-Specific Demethylase 1.
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critical for transcriptional activation [44]. Methylation of
C1683 in HOTAIR’s principal transcript (RefSeq
NR_003716) at the boundary of the LSD1-binding motif
is thought to be critical for the HOTAIR-LSD1 physical
interaction [45]. Acting as a bridging scaffold for PRC2
and LSD1/CoREST/REST, HOTAIR represses gene ex-
pression by coupling an increase of the repression code
H3K27me3 with a decrease of the activation code tri-
methylation of histone H3 lysine 4 (H3K4me3) on its
target promoters [41]. In accordance, deletion of the
mouse Hotair gene results in de-repression of the
HOXD cluster that is coupled with decreased oc-
cupancy of H3K27me3 and increased occupancy of
H3K4me3 on the HOXD gene promoters due to a loss of
HOTAIR-mediated recruitment of PRC2 and LSD1 [46].
Consequently, HOTAIR null mice exhibit homeotic trans-
formation of the spine and malformation of metacarpal-
carpal bones [46].
The human HOTAIR gene can be transcribed into

several variants via alternative splicing as illustrated in
the GRCh38/hg38 Assembly on UCSC Genome Browser
(Figure 1). The RefSeq catalogue includes three HOTAIR
variants (Figure 1). The GENCODE v20 catalogue in-
cludes nine HOTAIR variants and four of them are
single exon transcripts (Figure 1). A recent study using a
targeted RNA capture and sequencing strategy identified
six major HOTAIR splicing variants and proposed one
alternative splice site, when active, can eliminate the
PRC2 binding domain [48]. Consistently, two multi-exon
HOTAIR variants in the GENCODE catalogue lack the
PRC2-interacting domain and the LSD1-interacting do-
main (Figure 1, marked by red open rectangles). It is a
worthy cause to determine whether alternative splicing
of HOTAIR is regulated in any physiological or patho-
logical context and whether the splicing variants exert
different functions due to their different structures.
Since its first link to metastasis in breast cancer, ele-

vated expression of HOTAIR has been reported in at
least 16 types of malignancies [19,22-24,49-82]. Dysregu-
lated expression of HOTAIR has not yet been reported in
hematological malignancies, although the protein-coding
HOX genes play a critical role in those disorders [83].

Expression of HOTAIR in lung cancer
HOTAIR exhibits significantly higher expression in the
tumor tissue than the adjacent non-tumor tissue in pa-
tients with small cell lung cancer (SCLC) and non-small
cell lung cancer (NSCLC) (Table 1) [19-24]. In SCLC,
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elevated expression of HOTAIR is linked to lymphatic in-
vasion and relapse (Table 1) [21]. In NSCLC, elevated ex-
pression of HOTAIR is linked to lymph node metastasis
and poor survival in patients with lung adenocarcinoma
(LAC) and squamous cell carcinoma (LSCC) (Table 1)
[19,20,22-24]. Moreover, elevated expression of HOTAIR
is correlated with brain metastasis in NSCLC [24].
It remains unknown whether elevated expression of

HOTAIR in lung cancer is caused by genetic alterations,
such as amplification, deletion, or point mutations. One re-
cent study reported that the human HOTAIR gene harbors
an enhancer-like region between +1719 bp and +2353 bp
downstream of its transcription start site in intron 2 [84].
The enhancer contains a risk SNP rs920778 for esopha-
geal squamous cell carcinoma, and the rs920778T allele
containing the enhancer drives higher expression of a re-
porter gene than the rs920778C allele (Figure 2) [84].
More importantly, the rs920778TT allele is correlated
with higher expression of HOTAIR in the esophageal tis-
sue than the rs920778CC allele, and the HOTAIR
rs920778TT carriers are at a higher risk of esophageal
squamous cell carcinoma than the HOTAIR rs920778CC
carriers [84].
One emerging mechanism underlying up-regulation of

HOTAIR in cancer cells is direct transcriptional activa-
tion of HOTAIR by classical oncogenes. For instance,
HOTAIR is transcriptionally activated by the oncogene
Myc through an E-box located at 1053 bp upstream of
the transcription start site of the human HOTAIR gene
in gallbladder cancer cells [85]. Because Myc is also a
well-documented oncogene in lung cancer, this mechan-
ism needs to be explored in lung cancer [86].
Transcriptional up-regulation of the human HOTAIR

gene in cancer involves epigenetic mechanisms. An intri-
guing observation in breast cancer tissues is that in-
creased DNA methylation in an intergenic CpG island
located between HOXC12 and HOTAIR is positively
correlated with HOTAIR expression in breast cancer
[69]. It is proposed by the authors that the methylated
intergenic CpG island acts as a barrier to prevent repres-
sive heterochromatin from spreading from the HOXC12
gene into the neighboring HOTAIR gene [69]. On the
other hand no CpG insland is predicted in the human
HOTAIR promoter (2 kb upstream of HOTAIR’s tran-
scription start site) using MethPrimer [87]. Besides DNA
methylation histone modifications regulate the expression
of HOTAIR. In breast cancer cells, estradiol activates the
expression of HOTAIR via recruitment of histone meth-
yltransferases mixed lineage leukemia proteins (MLL) to
the HOTAIR promoter [50]. Consequently, MLL poises
the HOTAIR promoter for transcription via H3K4me3.
Similar to protein-coding genes, lncRNAs have emerged

as targets of microRNAs in a base-pairing fashion [88]. In
exon 6, the HOTAIR transcript harbors a target site for
miR-34a (902–923 bp in RefSeq NR_003716) (Figure 2)
[54]. miR-34a reduces the expression of HOTAIR and a
reporter gene that is controlled by the miR-34a target site
from HOTAIR in prostate cancer cells [54]. A target site
for miR-141 is identified in exon 6 of the HOTAIR tran-
script (1287–1308 bp in RefSeq NR_003716) (Figure 2)
[53]. miR-141 reduces the expression of HOTAIR and a
reporter gene that is controlled by the miR-141 target site
from HOTAIR in renal carcinoma cells [53]. It is note-
worthy that miR-141 is a member of the miR-200 family,
one of the most potent miRNA inhibitors of epithelial-
mesenchymal transition (EMT), a pathological process
that is promoted by HOTAIR in cancer [49,89]. HOTAIR
is also predicted to harbor a let-7i target site in its exon
6 (2120–2141 bp in RefSeq NR_003716) although its
binding to let-7i has not been experimental validated
(Figure 2) [90]. Nevertheless the RNA levels of HOTAIR
can be reduced by overexpression of let-7i and increased
by introduction of a let-7i-specific antagomir [90]. let-7i-
mediated decay of HOTAIR appears to rely on formation
of a hetero-tetramer that consists of HOTAIR, let-7i,
Ago2, and a RNA binding protein human antigen R
(HuR). The HuR binding domain in HOTAIR is mapped
to exon 6 (~1,028–1,272 bp in RefSeq NR_003716).
Although it remains unclear how let-7i, Ago2, and HuR
coordinate decay of HOTAIR, HuR’s binding to HOTAIR
appears to recruit the let-7i/Ago2 complex to HOTAIR
for decay (Figure 2) [90]. In summary, the tumor sup-
pressive miRNA-mediated decay of HOTAIR, although
established in other cancer types, warrants further in-
vestigation in lung cancer because let-7, miR-34, and
miR-141 act as critical tumor suppressors in lung
cancer [91-94].
An intriguing phenomenon observed in the seminal

study of HOTAIR in breast cancer is that established
breast cancer cell lines exhibit a much lower expression
of HOTAIR than breast cancer tissues [60]. This appar-
ent discrepancy might be attributed to activation of
HOTAIR expression by several metastasis-promoting
signals that are aberrantly enriched in the tumor micro-
environment but absent in routine cell culture. For in-
stance, transforming growth factor-β1 (TGF-β1) activates
the expression of HOTAIR in breast and colon cancer
cells, and such an induction is required for acquisition of
EMT and cancer stem cell phenotypes [49,95]. Prolonged
exposure of human breast cancer MCF-7 cells to tumor
necrosis factor-α (TNF-α) induces the expression of
HOTAIR and EMT [96-98]. Moreover, type 1 collagen
transcriptionally up-regulates the expression of HOTAIR
in lung adenocarcinoma cells [19]. Interestingly, all three
stimuli are potent inducers of EMT in lung cancer
cells and can up-regulate expression of several tumor-
promoting miRNAs, such as miR-21 and the miR-17 ~ 92
cluster [95,96,99-102].
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Functions of HOTAIR in lung cancer
Elevated expression of HOTAIR is correlated with inva-
sion, metastasis, and poor survival in patients with lung
cancer (Table 1) [19-24]. In lung cancer cells HOTAIR
regulates genes and signaling pathways that are pivotal
to differentiation, proliferation, and invasion. Among the
HOTAIR-regulated genes in lung cancer cells, HOXA5
is of particular interest because of its established roles in
lung development and tumorigenesis [23]. HOXA5 is es-
sential to morphogenesis of the embryonic respiratory
tract and postnatal lung development [103]. Interest-
ingly, HOXA5 is also down-regulated by another HOX
cluster derived non-coding RNA, miR-196a, whose ex-
pression is inversely correlated with HOXA5 in lung
cancer [104]. It is plausible that HOTAIR and miR-196a
act in concert to repress the expression of HOXA5 and
thereby promote dedifferentiation of lung epithelial cells
during lung tumorigenesis. Another HOTAIR-repressed
gene is p21WAF1/CIP1, a mediator of p53-induced growth
arrest and apoptosis in response to DNA damage [22].
HOTAIR promotes proliferation, survival, and resistance
to cisplatin through repression of p21WAF1/CIP1 in lung
adenocarcinoma cells [22]. Thus HOTAIR can promote
dedifferentiation and proliferation in lung cancer.
In addition to proliferative phenotype, HOTAIR medi-

ates invasive phenotype of lung cancer cells through its
promotion of EMT. EMT is defined as a series of events
through which epithelial cells lose many of their epithe-
lial characteristics and acquire property that is typical of
mesenchymal cells, which leads to invasiveness and
stemness of cancer cells [105]. During EMT, HOTAIR
represses the expression of cell adhesion-related genes
that are characteristic of epithelial cells in SCLC cells
[21]. HOTAIR also mediates EMT via repression of
EMT inhibitors. For instance, HOTAIR represses the ex-
pression of Wnt inhibitory factor 1 (WIF-1), an inhibitor
of the Wnt/β-catenin pathway that mediates EMT in
esophageal cancer cells [58]. In addition HOTAIR re-
presses the expression of phosphatase and tensin homo-
log (PTEN), an inhibitor of EMT, in laryngeal squamous
cell carcinoma cells [65]. Besides repression of EMT in-
hibitors, HOTAIR also mediates the expression of EMT
effectors. For example, HOTAIR is required for the ex-
pression of matrix metalloproteinases that break down
the extracellular matrix to pave the path for invasion in
lung cancer cells [20,59,76,79,106]. Taken together,
HOTAIR is induced by EMT stimuli, and such an induc-
tion in turn promotes the gene expression program that
results in EMT.
The prevailing mechanism of HOTAIR-mediated regu-

lation of cancer is that elevated expression of HOTAIR
shifts PRC2-mediated gene repression from tumorigenic
genes to tumor-suppressive genes [60,61,63,64]. This
mode of action is supported by studies on HOTAIR’s
partners in lung cancer. The components of PRC2 are
overexpressed in lung cancer and exert tumorigenic ef-
fects in lung cancer. EZH2 is overexpressed in SCLC
and represses the expression of cell adhesion-related
genes, which resembles the effects of overexpression of
HOTAIR in SCLC cells [21,107]. Another PRC2 compo-
nent, SUZ12, promotes proliferation and metastasis of
NSCLC cells via repression of E2F1, ROCK1, and ROBO1
[108]. Besides PRC2, HOTAIR may promote lung cancer
through LSD1. LSD1 mediates proliferation and EMT
in lung cancer cells, and its overexpression is associated
with shorter overall survival of patients with SCLC and
NSCLC [109,110].
HOTAIR can potentially regulate lung cancer through

physical interactions with E3 ubiquitin ligases and their
corresponding substrates. For instance, E3 ubiquitin ligase
Dzip3 and its substrate Ataxin-1 bind tandem to a ~250
nucleotide region in exon 6 (~1,028–1,272 bp in RefSeq
NR_003716) through their respective RNA binding do-
mains [90]. On the other hand, E3 ubiquitin ligase Mex3b
and its substrate Snurportin-1 bind to HOTAIR in two
far apart regions at ~125–250 bp and ~1,142–1,272 bp
(RefSeq NR_003716), respectively [90]. Thus HOTAIR
serves as an assembly scaffold that facilitates the interac-
tions of the bound E3 ubiquitin ligases and their co-
rresponding substrates, which leads to proteolysis of
Ataxin-1 and Snurportin-1 [90]. Intriguingly, Ataxin-1,
Snurportin-1, and HuR appear to compete for the same
region in HOTAIR (~1,028–1,272 bp in RefSeq NR_
003716) that mediates decay of HOTAIR upon HuR
binding (Figure 2) [90]. It is plausible that HuR-mediated
decay of HOTAIR and HOTAIR-mediated ubiquitination
of Ataxin-1 and Snurportin-1 are mutually exclusive
because of their competition for the same region in
HOTAIR. The intertwining of HOTAIR decay and prote-
olysis may play a role in cell senescence. Induction of
HOTAIR in senescent cells prevents premature senes-
cence via interaction with Dzip3 and Mex3b and the con-
sequent rapid proteolysis of Ataxin-1 and Snurportin-1
[90]. HOTAIR-mediated regulation of senescence is
potentially important in lung cancer because evasion of
senescence is proposed as a critical step in lung tumori-
genesis [111]. Moreover, HOTAIR-mediated ubiquitina-
tion and degradation of Ataxin-1 is of particular interest
to lung cancer because Ataxin-1 is essential to lung
alveolization [112]. Thus HOTAIR may promote dediffer-
entiation of lung epithelial cells through two distinct
mechanisms, i.e., transcriptional repression of HOXA5
and ubiquitin-mediated proteolysis of Ataxin-1 [23,90].
An emerging theme in the non-coding RNA world is

the crosstalk between miRNAs and lncRNAs [88]. As
discussed above, the expression of HOTAIR is regulated
by several tumor suppressive miRNAs, such as miR-34a
and miR-141 in cancer cells (Figure 2) [53,54]. On the
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other hand, HOTAIR antagonizes several tumor suppres-
sive miRNAs. In gastric cancer cells, HOTAIR acts as a
competitive endogenous RNA (ceRNA) to trap miR-331-
3p through a complementary target site (1451–1471 bp
in RefSeq NR_003716) and thereby increases the ex-
pression of the miR-331-3p-targeted oncogene HER2
(Figure 2) [68]. In gall bladder cancer, HOTAIR’s onco-
genic activity requires its binding to and neutralization
of miR-130a (1805–1826 bp in RefSeq NR_003716)
(Figure 2) [85]. Reciprocally, miR-130a represses the ex-
pression of HOTAIR in a target site-dependent manner
(Figure 2) [85]. Despite its discovery in other types of can-
cer, a crosstalk between HOTAIR and miRNAs is worth
exploring in lung cancer because miR-331 and miR-130a
are tumor suppressors in lung cancer [113,114].

Clinical potentials of HOTAIR in lung cancer
HOTAIR can be explored as a biomarker in lung cancer
because its elevated expression in lung tumor tissues is
correlated with metastasis, drug resistance, and poor
survival in patients with lung cancer (Table 1). For in-
stance, in a cohort of 42 patients with NSCLC, 5-year
post-operative survival in 21 patients with high expres-
sion of HOTAIR is at only 20% vs a 45% survival rate in
21 patients with low expression of HOTAIR [23]. In an-
other cohort of 35 patients with SCLC average disease-
free survival is at 30.8 months in 12 patients with high
expression of HOTAIR vs average survival of 46.3 months
in 23 patients with low expression of HOTAIR [21].
HOTAIR’s feasibility as a biomarker is enhanced by

the findings that lncRNAs are stable and measurable in
body fluids and thereby suitable for measurement via
non-invasive procedures [7]. HOTAIR along with several
other lncRNAs can be quantitatively measured in plasma
samples collected from patients with gastric cancer
[115]. HOTAIR’s power as a biomarker is further en-
hanced when it is measured in combination with other
critical regulators of lung cancer. A combined measure-
ment of exosomal miR-21 and HOTAIR yields greater
sensitivity and specificity in distinguishing laryngeal
squamous cell carcinoma from benign polyps than each
individual measurement alone [77]. This approach can
be readily applied to lung cancer because miR-21 is a
miRNA signature of NSCLC and co-upregulated by Col-
1 in lung cancer cells [19,99,116]. Another approach to
increase the predictive power of HOTAIR is simultan-
eous measurement of HOTAIR and its protein partners,
e.g., EZH2. As exemplified in a breast cancer study sim-
ultaneous increase of HOTAIR and PRC2 has a greater
correlation with poor survival than the increase of each
marker alone [52].
HOTAIR is an appealing therapeutic target because in-

hibition of HOTAIR exhibits promising anti-tumor effi-
cacy in preclinical models of lung cancer (Table 1).
Moreover, pharmacological inhibitors of PRC2 exhibit
convincing anti-tumor efficacy in preclinical models of
NSCLC and SCLC [117,118]. It is important to specifically
disrupt the interaction between HOTAIR and PRC2 in
cancer cells upon successful molecular and biochemical
resolution of the interaction between HOTAIR and PRC2.
This approach can potentially spare any HOTAIR-
independent physiological functions of PRC2. Another ap-
peal of HOTAIR as a therapeutic target arises from its
critical role in resistance to chemotherapy drugs in lung
cancer cells [22]. A combination of traditional chemother-
apy and inhibition of HOTAIR can potentially overcome
drug resistance and increase tolerance to traditional
chemotherapy.

Challenges and future directions
HOTAIR has emerged as a promising diagnostic and
therapeutic target for lung cancer (Table 1). However,
several challenges hinder realization of HOTAIR’s potential
in intervention of lung cancer. One challenge is our limited
understanding of the interaction between HOTAIR and its
protein partners [41]. A high-resolution map of HOTAIR-
PRC2 and HOTAIR-LSD1 interactions is essential to de-
velop compounds that can effectively and specifically
disrupt their interaction in lung cancer cells. This is
highlighted by the fact that PRC2 physically interacts
with thousands of lncRNAs, and its function is tightly
regulated by these interacting lncRNAs [119,120]. It is
conceivable that PRC2 forms a pool of functional units as
defined by their lncRNA partners, and this pool of PRC2-
lncRNA units is dynamically fine-tuned to maintain an
appropriate gene expression program to meet the cell’s
needs in a particular cellular context. How an increased
expression of HOTAIR disturbs this fine-tuned pool of
PRC2-lncRNA units and promotes cancer is a daunting
question to answer. One can speculate that increased
HOTAIR binding to PRC2 can interfere with formation
of other PRC2-lncRNA units through competitive bind-
ing or alteration of PRC2 conformation. This is critical to
lung cancer because TUG1, also a PRC2-interacting
lncRNA, exerts its tumor suppressive action through
PRC2-mediated repression of HOXB7 [38].
Another challenge arises from EZH2-mediated methy-

lation of non-histone proteins. Undoubtedly, inhibition
of either HOTAIR or EZH2 hinders progression of lung
cancer (Table 1) [117,118]. However, the experimental
designs in these studies are not able to exclude the pos-
sibility that the altered gene expression and cell behaviors
can be, at least in part, attributed to altered methylation
of transcription factors and other non-histone proteins
methylated by EZH2. For instance, EZH2 directly me-
thylates transcription factor GATA4 and diminishes
GATA4’s transcriptional activity [121,122]. HOTAIR-
regulated EZH2-dependent methylation of non-histone
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substrates in lung cancer cells can be explored using a
proteomic survey of the methylated proteins with or
without inhibition of HOTAIR and/or EZH2.
It is also naive to conclude that PRC2, LSD1, and the

newly discovered E3 ubiquitin ligases are the sole pro-
tein partners of HOTAIR to mediate its functions in lung
cancer [41,90]. lncRNAs reside in every subcellular com-
partment and act in a wide range of cell processes, such
as signaling transduction, RNA splicing, and ligand-
receptor engagement [4]. The versatility of HOTAIR
function in lung cancer needs to be explored with a thor-
ough screening of HOTAIR-bound protein partners
using HOTAIR as bait in lung cancer cells.

Summary
HOTAIR has emerged as a novel master regulator of
lung cancer. HOTAIR possesses tremendous diagnostic
and therapeutic potentials in intervention of lung cancer.
Materialization of HOTAIR’s clinical potential requires
further investigation of the molecular mechanisms
underlying the tumor-promoting actions of HOTAIR in
lung cancer.
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