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Abstract

Telomeres are specific nucleoprotein structures at the ends of eukaryotic chromosomes. Telomeres and
telomere-associated proteins maintain genome stability by protecting the ends of chromosomes from fusion
and degradation. In normal somatic cells, the length of the telomeres gradually becomes shortened with cell
division. In tumor cells, the shortening of telomeres length is accelerated under the increased proliferation pressure.
However, it will be maintained at an extremely short length as the result of activation of telomerase. Significantly
shortened telomeres, activation of telomerase, and altered expression of telomere-associated proteins are common
features of various hematologic malignancies and are related with progression or chemotherapy resistance in these
diseases. In patients who have received hematopoietic stem cell transplantation (HSCT), the telomere length and the
telomerase activity of the engrafted donor cells have a significant influence on HSCT outcomes. Transplantation-related
factors should be taken into consideration because of their impacts on telomere homeostasis. As activation of
telomerase is widespread in tumor cells, it has been employed as a target point in the treatment of neoplastic
hematologic disorders. In this review, the characteristics and roles of telomeres and telomerase both in hematologic
malignancies and in HSCT will be summarized. The current status of telomerase-targeted therapies utilized in the
treatment of hematologic malignancies will also be reviewed.
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Introduction
The telomeres are specific nucleoprotein structures at
the ends of eukaryotic chromosomes which maintain
genome stability by protecting chromosomes from end
fusion and degradation. Human telomeres are composed
of 10–15 kb of 5′-TTAGGG-3′ DNA sequence repeats
and a telomere-associated protein complex, shelterin
(reviewed by Blackburn) [1]. The end of each telomere
consists of a t-loop structure formed by strand invasion of
the 3′ single strand overhang into the double-stranded
telomeric DNA and then stabilized by shelterin [2].
In most somatic cells, telomeres gradually become

shortened (20–59 bp/year) because of the end-replication
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problem during cell division [3,4]. Once its length reaches
a critical limitation, the telomere is unable to assemble the
t-loop structure and the chromosome becomes uncapped.
At this point the DNA damage response and replica-
tive senescence will be triggered through the ataxia
telangiectasia-mutated gene (ATM) or the ataxia telangi-
ectasia and Rad3 (ATR) -related checkpoint pathway [5].
However, cells in which cell cycle checkpoint proteins
have been inactivated are able to continue division and
continue losing telomeric sequences until they reach a
crisis stage in which p53-dependent apoptosis is triggered.
Cancer cells have to go through the crisis stage to
maintain their telomeres and achieve immortality. In
the majority of cancer cells (80% to 90%), telomerase
has been activated to maintain telomere length [6],
while a subset of cancer cells elongate telomeres through
telomerase-independent mechanisms named alternative
lengthening of telomeres (ALT) [7].
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Telomerase is a reverse transcriptase which maintains
telomere length by adding nucleotides to the single-
stranded (ss) DNA of the telomere during cell division [8].
Telomerase consists of a protein component (hTERT) and
an RNA template component (hTERC). hTERT is the
catalytic subunit of telomerase which limits its reverse
transcriptase activity. hTERC consists of an 11 nucleotide
sequence (5′-CUAACCCUAAC-3′) which is complemen-
tary to the telomere sequence (TTAGGG)n [9]. Telomer-
ase is recruited to the telomere via its interaction with
shelterin.
Shelterin is a protein complex which consists of 6

telomere-associated proteins: telomeric repeat-binding
factors 1 and 2 (TRF1 and TRF2), TRF1-interacting nu-
clear factor 2 (TIN2), protection of telomeres (POT1),
POT1 and TIN2-interacting protein 1 (TPP1), and TRF2-
interacting protein 1 (Rap1) (Figure 1). Shelterin protects
the telomere from being recognized as a double-strand
break in the DNA sequence which would lead to activa-
tion of the DNA damage response and repair process
(reviewed by de Lange) [10]. Shelterin is anchored to the
chromosomal end by the double-strand (ds) DNA binding
proteins TRF1 and TRF2, the ss DNA binding protein
POT1, and Rap1 which binds DNA at the ds-ss junction
of the telomere [11]. TRF1 and TRF2 bind TIN2 simultan-
eously to form two separate complexes [12,13]. The binding
between TRF1/TRF2 and TIN2 protects TRF1/TRF2 from
degradation by tankyrase and prevents their inappropriate
localization [13].
POT1 and TRF2 interact with each other and protect

the telomeres from the DNA damage response triggered
by the ATR and ATM pathways independently [14,15].
POT1-deleted mice show increased p53-dependent apop-
tosis, as well as elevated DNA damage response and
chromosomal fusions [16]. TPP1 forms a heterodimer
Figure 1 The structure of shelterin. TRF1 and TRF2 bind to double stran
proteins. POT1 binds to single strand (ss) DNA while RAP1 binds to DNA at
TRF2 spontaneously and protects TRF1 from being degraded by tankyrase.
and recruits telomerase to the shelterin complex.
with POT1 and acts as the bridge between the TRF1
complex and telomerase [17,18].

Telomeres and telomerase in hematologic
malignancies
Acute leukemia (AL)
AL is characterized by uncontrolled proliferation of
myeloid precursor cells (acute myeloid leukemia, AML)
or lymphoblast cells (acute lymphoblastic leukemia, ALL).
Shortened telomere length is observed in patients with AL
and is associated with chromosome instability. Capraro
et al. reported that AL patients with an aberrant karyo-
type have significantly shorter telomere length than pa-
tients with a normal karyotype, and those patients with
multiple aberrations possess the shortest telomeres.
They also compared telomere length and telomerase
activity in different subtypes of AL cells. They found
that B-ALL cells had the shortest telomeres and the
highest level of telomerase activity among all the sub-
types of AL. Leukemia cells with abnormal karyotypes
exhibited shorter telomeres than those with a normal
karyotype (4.5 kb vs. 9.14 kb in ALL, 4.33 kb vs. 7.06 kb
in AML) [19]. The order of telomerase activity is ranked
B-ALL > AML > T-ALL.
The hTERT component of telomerase possesses many

alternatively-spliced forms in which only the full-length
transcript (+α + β) can be translated into a properly active
enzyme. B-ALL cells exhibit the highest proportion of the
full-length active product, in line with the trend in telomer-
ase activity. Among all French-American-British (FAB) sub-
types of AML, M0 and M3 have the lowest telomerase
activity [19]. The telomerase activity of ALL cells has been
reported to be higher in male patients with than in female
patients. This may be due to the negative regulatory func-
tion of estrogen on telomerase [20].
d (ds) DNA and form two separate complexes with other shelterin
the ds-ss joint. PINX1 is a TRF1 binding protein. TIN2 binds TRF1 and
TPP1 and POT1 form a heterodimer. TPP1 links TIN2 and POT1/TPP1
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Shortened telomere length and increased telomerase
activity are associated with reduced response to chemo-
therapy, faster disease progression and poor prognosis in
patients with AL. AML patients in the late stage of the
disease have shorter telomere lengths and higher tel-
omerase activity than those in the early stages. Relapsed
AML patients have the shortest telomere length and
highest telomerase activity [21,22]. Asfour et al. reported
that apoptosis of the leukemic blasts was blocked by tel-
omerase in ALL patients, resulting in an increased tumor
burden, faster disease progression and shortened survival
[20]. Telomerase activities in ALL patients correlated to
the enzyme concentration of lactate dehydrogenase
(LDH), which is an adverse prognostic factor in ALL
patients [20].
Altered expression of shelterin proteins has also been

reported in de novo acute leukemic cells. Shi et al. re-
ported that the expression of TRF1, which is a negative
regulator of telomerase activity, was lower in patients
with AL than in normal volunteers [23]. Ohyashiki et al.
reported that patients with high hTERT expression or
longer telomere length tended to have higher levels of
TRF1 expression [24]. Capraro et al. compared the expres-
sion of shelterin proteins between different subtypes of AL.
They found that TRF1 expression was reduced in AL and
was lowest in AML patients. Meanwhile TRF2 expression
was increased in AL and was highest in B-ALL patients,
especially in B-ALL patients with abnormal karyotype. Ex-
pression of both TPP1 and RAP1 was increased in AL and
was highest in T-ALL patients [19]. After chemotherapy,
the TRF1 expression level increased in patients achieving
complete remission (CR) but not in those patients in
whom CR was not achieved [23]. When the acute pro-
myelocytic leukemia (APL) cell line HL-60 was induced
to differentiate into mature cells, telomerase activity
was reduced and the expression of TRF1, TRF2 and
TIN2 was increased [25].

Chronic lymphocytic leukemia (CLL)
CLL is characterized by an abnormal expansion of mature
B lymphocytes. Reliable prognostic factors are crucial for
choosing therapeutic strategies in CLL patients and in
predicting the outcome (reviewed by Kipps) [26]. Shorter
telomeres, increased telomerase activity and altered
expression of shelterin proteins are all observed in CLL
patients. Patients with high-risk genomic aberrations, 11q
or 17p deletions, undergo more severe telomere attrition
due to the loss of ATM or p53, which are necessary to
trigger p53-dependent apoptosis and the DNA damage re-
sponse [27]. CLL patients with ATM mutations all display
extreme telomere shortening independent of disease stage
[28]. Patients with the chromosome aberration of a 17p
deletion also show up-regulated c-myc which is a positive
regulator of hTERT [29]. Functional assessment of the
TP53 pathway was recently proposed as a method to
precisely identify high risk CLL [30]. More evidence
will be necessary to confirm the connection between
telomere dysregulation and dysfunction of the TP53
pathway in CLL patients.
The observed shortening of telomere length in CLL

patients was in line with other classical biological factors
of CLL, including unmutated immunoglobulin variable
region genes (UM-IGVH), CD38 and ZAP-70 positivity
(>30%) and short (<6 months) lymphocyte doubling time
[29]. Sellmann et al. reported a linear correlation between
the frequency of IGHV gene mutations and the length of
the telomeres [31]. CLL patients with shorter telomere
length experienced worse clinical outcomes including
shorter progression-free survival (PFS) and overall sur-
vival (OS) [29,32]. Thus telomere length was indicated
as a negative prognostic factor and a threshold of -4.2 kb
was suggested to be a predictive separation in Sellmann’s
study [31].
Shelterin alterations were also identified in CLL patients

and were found to be involved in telomere instability. The
expression levels of TRF1, RAP1 and POT1 were all re-
ported to be reduced in B-CLL cells, while the expression
of TPP1 was increased [33]. In contrast, the expression of
TPP1 and TIN2 were reported to be down-regulated in
newly diagnosed Binet stage A CLL patients in another
study [34]. Telomere dysfunction caused by a POT1-
encoding gene mutation was recently identified in CLL
patients. The frequency of POT1 mutation was 3.5% in
CLL patients and reached 9% in CLL patients without
IGHV mutations [35].

Chronic myelocytic leukemia (CML)
CML is a myeloproliferative neoplasm characterized by
the presence of BCR/ABL fusion genes which encode
the Bcr-Abl fusion protein. The tyrosine kinase activity
of the Bcr-Abl fusion protein induces oxidative damage
and telomere shortening by generating reactive oxygen
species [36]. A shorter average telomere length was found
in leukemic cells of CML patients compared with white
blood cells of age-matched healthy individuals or BCR/
ABL-negative T lymphocytes from the same patients [37].
Furthermore, telomere shortening was accelerated as the
disease progressed from the chronic phase (CP) to the
blastic phase (BP), with a rate approximately 10 times that
in normal controls. Patients with a high-risk Hasford score
at diagnosis exhibited significantly greater telomere loss
than patients with a low-risk score, while patients with
intermediate risk showed an intermediate telomere loss
rate [38]. Average telomere length increased when patients
achieved complete cytogenetic remission (CCR) under
treatment with Imatinib Mesylate (IM) owing to the
hematopoietic reconstruction of BCR/ABL negative cells.
In contrast, patients who did not respond to IM exhibited
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a decrease in telomere length consistent with rapid cell
division [38]. Braig et al. utilized bone marrow cells of
telomerase knockout mice to establish a CML-like cell
culture. They demonstrated the presence of shorted
telomeres with an increase in the secretion of pro-
inflammatory cytokines and growth factors associated
with proliferation control in telomerase negative CML-like
cells. Their work indicated that a telomerase-targeting
strategy could induce senescence in CML-like cells and
alleviate the tumor promoting/progressing effect of
BCR-ABL [39]. Bakalova et al. demonstrated cross-talk
between Bcr-Abl/c-Abl tyrosine kinase and telomerase in
CML/ALL cells. Antisense inhibition of Bcr-Abl/c-Abl
proteins was able to reactivate telomerase to maintain cell
proliferation. Therefore the combination of TKI and tel-
omerase targeting may be a promising strategy in CML
treatment [40].
Individual telomere lengths have been determined in

CML patients. Pronounced shortening of telomeres has
been found on Yp, Yq, 1q, 5q, 9q, 8p, 21p and 21q. Gen-
omic instability caused by high telomere attrition rates
on the Y chromosome and on chromosome 21 might
account for secondary chromosomal abnormalities dur-
ing disease progression. An interesting finding was that
telomere length in some individual chromosome ends
was well maintained or even elongated. Some long-
telomere chromosome arms (7q, 11p, 15p, and 18p) re-
currently and specifically showed up in CML samples
compared with healthy controls. Long telomeres on
key chromosomes may contribute to a cell proliferation
advantage during clonal selection in the early stage of
CML ontogenesis [41,42].
The circular extra-chromosomal telomeric repeat (ECTR),

one of the ALT hallmarks, was used to define ALT activa-
tion in CML patients in a recent study. In this study, 27%
of CML patients in CP were reported to exhibit both high
ALT activity and telomerase activities. As telomerase ac-
tivity increases with disease progression, the dominating
telomere maintenance mechanism might transition from
ALT to telomerase [43].
Altered expression of shelterin proteins was also reported

in progressing CML patients. Campbell et al. reported that
expression levels of TRF1 and TRF2 were increased in
CML patients in the CP and in the accelerated phase (AP)
but reduced to a level comparable to normal controls in
the majority of patients in the BP. Increased expression
of TRF1 may thus induce telomere shortening in CML
in both the CP and AP [44]. High levels of TRF2 and
tankyrase might contribute to the delay in senescence
signaling triggered by the critically shortened telo-
meres and the consequent maintenance of telomere
length. When K562 cells were treated with Anti-Bcr-Abl
mRNA, decreased expression of TRF1 and TIN2 were
observed [40].
Myelodysplastic syndromes (MDS)
MDS are a group of disorders characterized by dysplastic
features in the hematopoietic cells with the tendency
to progress into acute leukemia [45]. By reason of the
heterogeneity of the diseases, results of telomere length
of MDS patients are not consistent. Recently, shortened
telomeres have been reported in isolated peripheral blood
leukocytes, CD15+ myeloid cells and CD19+ lymphocytes
of MDS patients [46]. Although the MDS clone origi-
nates within the myeloid compartment, abolishment of
T-lymphocytes differentiation and loss of naïve T-cells
are consequences of hTERT deficiency [47]. However,
telomere lengths in marrow stromal cells are reported
to be stabilized well [48]. The telomere lengths of individ-
ual chromosome arms was measured by Lange et al., who
found markedly longer telomeres in several chromosome
arms in patients with an isolated monosomy 7 compared
with patients with a normal karyotype or a complex karyo-
type [49]. The mechanism(s) involved in the stabilization
or elongation of telomeres in patients with monosomy 7
still requires future exploration.
Patients with telomere shortening at the time of diag-

nosis showed a high frequency of complex chromosome
abnormalities, faster disease evolution and shorter survival
time [50,51]. Sieglová et al. compared the telomere length
of MDS patients with different FAB subtypes. Telomere
length in the early phases of MDS (RA and RARS) was
longer compared to that in advanced forms of MDS
(RAEB + RAEB-T) and was shortest in secondary AML
from MDS. A significant negative correlation between
telomere length in bone marrow cells of MDS patients
and the International Prognostic Score System (IPSS)
score was observed [52]. In order to stabilize telomere
length, hTERT expression level and telomerase activity
were increased in MDS patients in the more advanced
stages [53]. Thus shortened telomeres and increased tel-
omerase activity could be regarded as prognostic factors
for MDS patients. In a recent study, three-dimensional
quantitative FISH of telomeres was carried out on nuclei
from bone marrow samples of MDS and AML patients.
Three-dimensional (3D) telomeric profiles which were
determined based on the nuclear telomeric architecture,
telomere numbers, the presence of telomere aggregates,
telomere signal intensities, nuclear volumes, and nuclear
telomere distribution, confirmed a dynamic and evolution-
ary process of telomere dysfunction during the transform-
ation of MDS to AML [54].

Telomeres and telomerase in hematopoietic stem
cell transplantation (HSCT)
HSCT is a potential curative therapy for many hematologic
disorders and immunodeficiency diseases. The self-renewal
capacity of hematopoietic stem cells (HSCs) is essen-
tial for reconstitution of the hematopoietic system. The
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proliferative potential of HSCs decreases with differenti-
ation and age in line with the shortening of telomeres and
increased telomerase activities in these cells. Mean telomere
length is shorter in HSCs purified from adult bone marrow
than from fetal liver or umbilical cord blood [55]. Telomer-
ase activity is higher in HSCs during the late development
stage than in non-expanding HSCs [56].
hTERT-deleted mice have been used as a telomerase-

deficient model for the study of telomerase function in the
hematopoietic system [57-59]. Sekulovic et al. reported
the loss of a 10 kb length of the telomere of leukocytes
generated from hTERT knockout HSCs after 6 days of
in vitro expansion and 3 months of regeneration in
secondary-transplanted recipient mice [57]. Telomere
dysfunction impaired mesenchymal progenitor cell func-
tion, reducing the capacity of bone marrow stromal cells
for maintaining functional HSCs. When wild-type HSCs
were transplanted into TERC-knockout recipient mice, ac-
celerated myelopoiesis and impaired B-cell development
occurred [59].
Patients who received autologous or allogeneic HSCT

(auto-HSCT or allo-HSCT) experienced more severe ero-
sion of telomere length in their blood cells under massive
differentiation pressure compared with their donors.
Akiyama et al. reported that the telomeres of transplanted
cells became shortened by up to 1.9 kb in auto-HSCT re-
cipients over an observation period of 5.3 years, the same
frequency of telomere erosion as would occur over 15–20
years in normal individuals. Telomere erosions of up to
2.1 kb were observed in patients who received allo-HSCT
[60]. Baerlocher et al. evaluated 44 long-term survivors
after allo-HSCT with a median follow-up of 17.5 years.
Significantly shortened telomere length was observed in
all blood cells lineages, including granulocytes, naïve/
memory T cells, B cells and natural killer/natural killer T
cells in the recipients compared with that in their donors
[61]. The rate of telomere shortening in recipients is high-
est in the first year after HSCT and then slows down to a
rate similar to that of their donor and of healthy controls
[62]. Telomere shortening in patients who received
allo-HSCT seems to be more sensitive to the influence
of ageing than auto-HSCT. A correlation between donor
age and telomere shortening rate has been found in allo-
HSCT but not in auto-HSCT recipients [60].
In allo-HSCT, more severe telomere shortening is

associated with elderly donors, female donors and the
development of chronic graft-versus-host disease (cGVHD)
[60,61]. The accelerated telomere shortening of trans-
planted female donor cells may be a consequence of the
deficiency of estrogen-upregulated telomerase activity
after transplantation [63]. Patients who develop cGVHD
also show more severe telomere attrition, probably due to
chronic inflammation and oxidative stress. In contrast, de-
velopment of acute GVHD (aGVHD) has no significant
impact on telomere length in recipients [61]. CD4 +
CD25 + Foxp3+ regulatory T cells (Treg) constitute a
lymphocyte subgroup responsible for the control of
cGVHD. Patients with telomerase deficiency in Treg
have impaired proliferative capacity of these cells and
consequently a higher incidence of moderate or severe
cGVHD [64].
Treatments involved in the HSCT procedure could also

have an impact on the telomere homeostasis of engrafted
HSCs and may eventually influence the outcomes of re-
cipients (Figure 2). In patients who received auto-HSCT,
pre-transplantation chemotherapy has a significant influ-
ence on the telomere length of transplanted cells. Telomere
length is negatively related to the number of courses of
cytoreductive therapy received by patients [60]. Ricca et al.
compared telomere length in peripheral blood progenitor
cells (PBSCs) collected after two tightly-spaced high-dose
(hd) chemotherapy courses. Telomere length was signifi-
cantly shorter in PBSCs collected after the second course
(hd-Ara-C) compared to that collected after the first
course (hd-CY) [65]. This difference in telomere length of
collected PBSCs determines the telomere length of the
hematopoietic cells after auto-HSCT. In another study
patients transplanted with PBSCs from the second col-
lection had significantly shorter telomeres than those
who received PBSCs from the first collection [66].
Donors’ HSCs with longer telomeres could offer a rep-

licative advantage and lead to faster granulocyte recovery
in the recipient after HSCT. In contrast, patients with
shorter telomere lengths after HSCT took a longer period
to reach neutrophil recovery and had a greater risk of
developing hematopoietic disorders [67]. Accelerated
telomere shortening and consequent chromosomal instabil-
ity are independently associated with the development
of therapy-related myelodysplasia or acute myelogenous
leukemia (t-MDS/AML) after auto-HSCT in patients with
Hodgkin’s lymphoma or non-Hodgkin’s lymphoma. In pa-
tients who developed t-MDS/AML, reduced proliferative
capacity of HSCs contributed to decreased generation of
committed progenitors [68].
The telomere length of hematopoietic cells in the recipi-

ent before HSCT, which represents the inner environment
of host, is another factor impacting the outcome of trans-
plantation. Peffault et al. reported that treatment-related
mortality was inversely correlated with age-adjusted
recipients’ pre-transplantation telomere length in their
lymphocytes (hazard ratio, 0.4) in patients who received
allo-HSCT, especially in patients with advanced stage
disease [69].

Telomerase-targeting therapies
Since the increased expression of hTERT and activation of
telomerase are universally involved in oncogenesis and
the progression of hematopoietic malignancies, telomerase



Figure 2 Factors affecting telomere length and recipient outcomes in hematopoietic stem cell transplantation. Mobilization, older
donors, and female donors are related to shortened telomeres in donor stem cells. Chemotherapy and conditioning courses before hematopoietic
stem cell transplantation (HSCT) could also accelerate telomere shortening in host cells. The telomere length (TL) of grafted stem cells is mainly
determined by the pretransplantation TL of donor cells, but is also affected by the host environment and by the occurrence of chronic graft versus
host disease (cGVHD). The TL of engrafted donor stem cells is important for the continuous and stable reconstitution of the hematopoietic system.
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inhibition could be an effective antineoplastic strategy for
therapy (Figure 3).

Immunotherapies
Telomerase-based immunotherapies utilize telomerase-
associated antigens to elicit CD4+ and CD8+ T-cell re-
sponses and the cytotoxic T lymphocyte (CTL) response,
which ultimately lead to lysis of tumor cells.
GV1001 is an MHC class II-restricted hTERT peptide

vaccine, which consists of amino acids 611–626 of
the hTERT active site. Granulocyte-monocyte colony-
stimulating factor (GM-CSF) and Toll-like receptor-7
(TLR-7) have been used as adjuvants in the GV1001
Figure 3 Telomerase inhibition therapies utilized in the treatment of
utilize telomerase-associated antigens to produce an immune response which
arsenic trioxide (ATO), interferon alpha (IFN-α) and interferon gamma (IFN-γ) r
the template region of the telomerase RNA component hTERC, competitively
site of hTERT.
vaccine to eliminate the problem of self-tolerance.
Preclinical studies in B-CLL patients confirmed that
telomerase-positive leukemic cells can naturally induce
telomerase-specific T cells [70]. However, a recent ran-
domized phase III clinical trials reported that combining
GV1001 to gemcitabine and capecitabine did not improve
the overall survival of patients with locally advanced or
metastatic pancreatic cancer [71].
Another vaccine, Vx-001, consists of a cryptic peptide of

hTERT or its optimized version with a modified tyrosine
(Y1) residue at the first amino-acid and enhanced peptide
affinity. The efficacy and safety of Vx-001 has been
confirmed in mouse model and in phase I/II clinical
hematologic malignancies. Telomerase-based immunotherapies
ultimately leads to lysis of tumor cells. Tyrosine kinase inhibitors (TKI),

educe the expression of hTERT; imetelstat (GRN163) is complementary to
binding and blocking telomerase; BIBR1532 inhibits the specific active
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trials in patients with various types of tumors. This vac-
cine is now scheduled for testing in a phase III clinical
trial in NSCLC patients [72-74].
GRNVAC1 is a dendritic cell (DC) -based telomerase-

associated vaccine. Immature DCs are mobilized and
isolated from the patient’s own peripheral blood then
transduced with mRNAs encoding the full-length hTERT
protein in vitro. The lysosome-associated membrane
protein (LAMP-1) mRNA sequence is co-transduced
into DCs to make the antigen easily degradable and to
enhance the immune response [75]. GRNVAC1 was tested
in a randomized phase II clinical trial in patients with
AML. Prolonged vaccination (up to 32 administrations) of
GRNVAC1 in AML patients was well tolerated in most
patients, and produced a greater effect in AML patients at
high risk of relapse [76,77].

Antisense oligonucleotide
GRN163L (Imetelstat) is the most promising oligonucleo-
tide possessing the ability to block telomerase by acting as
a complementary sequence to hTERC. In an in vitro study,
GRN163L showed effective inhibition of telomerase and
of cell growth in B-CLL cells and tumor initiating B
cells of patients with multiple myeloma (MM) [78,79].
GRN163L has been entered into stage I and II clinical
trials in patients with refractory and relapsed MM and
some types of solid tumors. GRN163L was reported to
be generally well-tolerated in patients with relapsed and re-
fractory MM. The most common treatment-related event
was thrombocytopenia and prolongation of the activated
partial thromboplastin time (APTT). The most marked
hematologic toxicity was observed in two patients with
prior auto-HSCT [80]. That may have been due to blockage
of telomerase activity in HSCs which impaired reconstitu-
tion of the hematologic system. In a recent single-center
study, GRN163L was shown to be effective in inducing
morphologic and molecular remissions in patients with
myelofibrosis, with a response rate of 44% [81].

BIBR1532
BIBR1532 is a synthetic non-nucleotidic small molecule
which selectively inhibits the active site of telomerase.
BIBR1532 leads to progressive telomere shortening and
apoptotic cell death in a concentration-dependent manner
in AML cell lines as well as in primary cells from patients
with AML or CLL [82-84]. BIBR1532 inhibits the activity
of telomerase through transcriptional suppression of
survivin-mediated c-Myc and hTERT expression, increas-
ing p73 and p21 expression, up-regulating the Bax/Bcl-2
molecular ratio and finally increasing P53-induced apop-
tosis [84,85]. P53 is the final executant of the telomerase-
inhibiting effect of BIBR1532. In P53-negative K562 cells,
the telomere length was stabilized when it reached
approximately 5 kb [85].
Other drugs with telomerase inhibiting activity
IM (Gleevec), the first selective tyrosine kinase inhibitors
(TKI), is reported to cause a dose-dependent inhibition
of telomerase activity in various leukemia cell lines, in-
cluding BCR-ABL negative cell lines [86-88]. IM regulates
telomerase activity by decreasing the expression of hTERT
and increasing the expression of telomerase inhibitor pro-
tein phosphatase 2A (PP2A) [87]. Following treatment with
IM, the expression levels of TRF1, TRF2 and PinX1 are
markedly reduced. The second-generation TKIs nilotinib
and dasatinib, which have higher potency than imatinib
against BCR-ABL (reviewed by Wei et al.), are more effect-
ive in reducing telomerase activity [89,90].
Arsenic trioxide (ATO) is successfully used to induce

complete remission and to trigger apoptotic death of APL
cells [91,92]. Ghaffari et al. reported a dose-dependent in-
hibition of telomerase activity of ATO and a reduction in
telomere length in ATO-treated NB4 cells. The mRNA
levels of Pin1, survivin, c-Myc, hTERT, and PinX1 were all
reduced in a concentration-dependent manner after 2
days of ATO treatment [93].
Interferons (IFNs) are multi-functional cytokines pro-

duced by eukaryotic cells. Xu et al. reported that IFN-α
could significantly down-regulate the expression of hTERT
and the activity of telomerase in many types of human
hematologic malignant cell lines, primary leukemic cells
and T-lymphocytes within 4 hours of treatment at a con-
centration of 5000 U/mL, through suppressing the hTERT
promoter activity [94]. Lindkvist et al. reported that IFN-γ
could also induce a decrease of hTERT expression. hTERT
mRNA levels were virtually abolished after 48 h of IFN-γ
treatment at 5000 U/mL [95].

Conclusions
Telomeres are essential for the maintenance of chromo-
some stability in mammalian cells. Accelerated telomere
shortening leads to activation of telomerase in stem cells
and in the majority of tumor cells. In patients with
hematologic malignancies, shortened telomeres and in-
creased telomerase activity are usually observed and are
associated with disease progression. In patients who have
received HSCT the telomere length of engrafted stem cells
is closely related to the outcomes of HSCT. Consequently
the telomere characteristics should be taken into consider-
ation during donor selection. It is also necessary to evalu-
ate the effect of chemotherapy and conditioning courses
on telomere length. Many promising telomerase targeting
therapies have been confirmed to be tolerable and effi-
cient to induce immune responeses in patients with
hematological malignancies. However optimized strategies
are still required to ensure their clinical efficiency. Further
work will be needed to elucidate the complete story of telo-
mere biology and to explore efficient telomerase-targeting
therapies in hematologic malignances.
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