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Abstract

The insulin-like growth factor (IGF) axis contains ligands, receptors, substrates, and ligand binding proteins. The
essential role of IGF axis in hepatocellular carcinoma (HCC) has been illustrated in HCC cell lines and in animal
xenograft models. Preclinical evidence provides ample indication that all four components of IGF axis are crucial
in the carcinogenic and metastatic potential of HCC. Several strategies targeting this system including
monoclonal antibodies against the IGF 1 receptor (IGF-1R) and small molecule inhibitors of the tyrosine kinase
function of IGF-1R are under active investigation. This review describes the most up-to-date understanding of
this complex axis in HCC, and provides relevant information on clinical trials targeting the IGF axis in HCC with
a focus on anti-IGF-1R approach. IGF axis is increasingly recognized as one of the most relevant pathways in
HCC and agents targeting this axis can potentially play an important role in the treatment of HCC.

Introduction
Hepatocellular carcinoma (HCC) is the 5th most com-
mon neoplasm worldwide with more than 600,000 cases
per year and the 3rd leading cause of cancer-related
death [1,2]. For the past 3 decades, the incidence of
HCC in the US has tripled, yet the 1 year survival rate
of HCC remains less than 50% [3]. Currently sorafenib
is the only medication that shows overall survival advan-
tage compared to placebo in patients with advanced
HCC [4,5]. However, the benefits with sorafenib are
moderate and its toxicities can be challenging to man-
age. For patients who fail or cannot tolerate sorafenib,
there are currently no standard treatments. Therefore,
there is an urgent need to search for novel effective
therapies in advanced HCC. Recently, the insulin-like
growth factor (IGF) axis has emerged as an important
pathway in the development and progression of HCC
and as a potential therapeutic target.
Here we review the complexity of IGF axis, the sup-

porting preclinical and clinical data highlighting the sig-
nificance of this pathway in HCC, and the early clinical
trials of targeting this axis in advanced HCC.

Components of IGF Axis
The insulin-like growth factor (IGF) pathway has highly
conserved function in mammals and plays a critical role
in energy metabolism and cell renewal in response to
nutrients [6-11]. IGF pathway is not only involved in cell
growth in tissue culture [12,13], but it also promotes cell
proliferation, migration and transformation into malig-
nant clone [12,14]. The IGF-1 pathway revolves around 4
essential components.

(1) Ligands
The first component contains the IGF ligands, which
include both insulin-like growth factor 1 (IGF-1) and
IGF-2. Their names are based on the observation that
both IGF-1 and IGF-2 are peptides, similar to insulin,
and they share 40% homology with proinsulin [15,16].
They are, however, slightly different from insulin structu-
rally by containing an additional domain, which could
account for their dramatically different role in neoplasms
in comparison with insulin [16].

(2) Receptors
The IGF ligands bind to the second component of the
IGF axis, the receptors which include IGF-1 receptor
(IGF-1R), IGF-2 receptor (IGF-2R), insulin receptor and
hybrid receptors consisting of IGF-1R and insulin recep-
tor hemireceptors (IGF-1R/insulin receptor) (Figure 1).
IGF-1 and IGF-2 both bind to IGF-1R with high affinities,
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and IGF-2 is the only ligand for IGF-2R [6,12,15]. IGF-1
only binds to insulin receptor at extremely high doses, as
IGF-1 has 100 fold higher affinity for IGF-1R compared
to insulin receptor [16]. IGF-2 usually binds to insulin
receptor during fetal development, as later in develop-
ment when IGF-1R is expressed, IGF-2 binds to IGF-1R
more tightly [16,17]. Each IGF-1R/insulin receptor hemi-
receptor only contains one a and one b subunit; IGF-1 is
the preferred ligand for IGF-1R/insulin receptor hybrid
receptors compared to insulin, as IGF-1 can tightly bind
in the presence of only one a subunit of the hemirecep-
tor, while insulin requires two b subunits of the hemire-
ceptor to provide optimal binding [16].

(3) Substrates
The third component of the IGF axis refers to the insulin
receptor substrate (IRS) and Shc proteins, which are the
major signals downstream of IGF-1R activation [16].
There are 4 types of IRS and the important ones include
IRS-1 and IRS-2.

(4) Ligand Binding Proteins
The last key component of the IGF axis consists of IGF
binding proteins (IGFBPs). There are 6 members of

IGFBPs with high affinities for IGF-1 and IGF-2. For
instance, IGFBPs 1-4 bind both IGF-1 and IGF-2 with
similar affinities, yet IGFBP-5 and 6 strongly prefer IGF-
2 as their ligand.

Physiologic Functions of IGF Ligands and
Receptors
(1) IGF Ligands
(A) IGF-1
The majority of IGF-1 is synthesized in the liver under
the influence of growth hormone, which is a major pro-
moter of postnatal growth [18]. However, deletion of
liver specific IGF-1 gene in mice showed no difference
in growth compared to wild type animals, even though
serum IGF-1 level was reduced by 75% [18-20]. Such
observations came with no surprise when later on IGF-1
was found to be produced in other organs such as the
kidneys, muscle and bone [16]. IGF-1 can act as an
autocrine, paracrine or endocrine growth factor, there-
fore even minimal amount of IGF-1 could still exert its
function on postnatal growth [18-20]. Nutrition deple-
tion reduced IGF-1 levels and risk of cancer [12,21],
whereas infusion of IGF-1 abolished the protection
against carcinogenesis provided by dietary restriction
[22]. Epidemiology studies also indicate that IGF-1 is
involved in the risk of cancer development. Several stu-
dies suggest that height and weight at birth are propor-
tional to the level of IGF-1 in the umbilical cord, and
that infants with higher percentile of height and weight
at birth tend to develop more common cancers such as
breast, prostate and colorectal later in life [22-28].
(B) IGF-2
IGF-2 shares 60% homology with IGF-1. Similar to IGF-
1, it is also mostly produced in the liver [6,16] and acts
in an autocrine, paracrine and endocrine fashion. It is
abundant in fetal development, yet its quantity sharply
diminishes after birth [16]. IGF-2 knockout mice
develop normally except all of them have stunted
growth after birth [16], indicating that IGF-2 is critical
in growth.

(2) IGF Receptors
(A) IGF-1 Receptor
The effects of IGF-1R on apoptosis and cell mobility
Both IGF-1 and IGF-2 bind to IGF-1 receptor 1(IGF-
1R), a tyrosine kinase that is structurally similar to insu-
lin receptor (IR) (Figure 1). After IGF ligand binding,
the b subunit of IGF-1R undergoes conformational
change which causes autophosphorylation of its own
tyrosine kinase domain, which leads to the full activa-
tion of IGF-1R. IGF-1R induces anti-apoptosis and
increases tumor cell mobility. The anti-apoptotic prop-
erty of IGF-1R was shown in its response to p53, the
tumor suppressor gene that promotes apoptosis. Wild
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Figure 1 Binding of insulin and IGF ligands to their receptors.
Insulin receptor and IGF-1 receptor are both tyrosine kinases. IGF-2R
functions as a clearance site for IGF-2. Insulin receptor and IGF-1R
are homologous and form hemireceptors. IGF-1 binds to IGF-1R and
to IGF-1R/Insulin Receptor hemireceptor; it binds to insulin receptor
only at very high concentrations. IGF-2 binds to IGF-1R, IGF-2R and
binds to insulin receptor only during early fetal development.
Insulin binds to insulin receptor, and it binds to IGF-1R/Insulin
Receptor hemireceptor at high concentration. Signal transduction is
activated after the activation of IGF-1R, IGF-1R/Insulin Receptor
hemireceptor and insulin receptor; however, IGF-2R activation
results in no signal downstream. Solid lines represent high affinity
binding, dotted lines indicate weak binding.
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type p53 expression inhibited the gene expression of
IGF-1R, while mutant p53 increased the gene expression
of IGF-1R [16,29]. Oncogenes such as Src kinase and
Akt kinase both stimulated the gene expression of IGF-
1R, providing more evidence that IGF-1R is vital in
carcinogenesis [16,29-31]. In addition, IGF-1R also sti-
mulates cell mobility, as demonstrated by its activity in
melanoma cell lines [32].
IGF-1R and malignant transformation Another impor-
tant role of IGF-1R in carcinogenesis is its ability to
transform and maintain the transformed phenotype [33].
Mouse embryo fibroblasts possess an extremely strong
tendency to spontaneously transform in culture without
any additional factors [33], which was no surprise given
IGF-1R overexpressed in mouse embryo fibroblasts led
to transformation [33-36]. However, when IGF-1R gene
in mouse embryo fibroblasts was disrupted, these fibro-
blasts failed to transform, even in the presence of the
most potent oncogenes such as SV40 T antigen, Ha-ras
oncogene and activated c-Src [33,37-41]. An even more
noteworthy observation was that when IGF-1R was rein-
troduced, these mouse embryo fibroblasts again restored
their ability to rapidly transform.
Toxicities of IGF-1R inhibition IGF-1R is required for
anchorage independent growth, and inhibition of IGF-1R
causes apoptosis without toxicities in vivo. Human pros-
tate cancer cells usually form anchorage independent
growth, however; when IGF-1R was abolished, these cells
failed to grow in culture, and the same model showed no
tumor formation in mice [33,42-45]. These observations
indicate that IGF-1R is an essential requirement for
anchorage independent growth, a pattern common in
cancer cell proliferation. In animal models with trans-
formed tumors where IGF-1R was overexpressed, strate-
gies that caused IGF-1R downregulation such as
antisense against IGF-1R produced profound tumor
apoptosis and massive reductions of metastases [46,47].
Interestingly, IGF-1R is not required for normal cell
growth, as its absence provided no growth inhibition on
monolayer cell culture [45], eluting to the possibility that
anti-IGF-1R strategies could produce minimal side effects
on normal tissues.
(B) IGF-2 Receptor
There are no known downstream signals related to IGF-
2R activation and it appears that IGF-2R mainly serves
as a clearance site for its only ligand, IGF-2 [6]. Most of
the effects of IGF ligands are mediated through IGF-1R,
a transmembrane tyrosine kinase [6,12,16].
(3) IGF-1R Substrates
Among the substrates of IGF-1R, IRS plays a prominent
role in exerting the activity of IGF-1R by activating down-
stream signals [16]. After IGF-1R activation, additional tyr-
osine residues are then phosphorylated, which act as
docking stations for substrates such as the insulin receptor

substrate (IRS) and Shc adaptor proteins (Figure 2). IRS
and Shc adaptor proteins then recruit additional factors to
yield activations of two major cascades, the phosphatidyl
inositol 3-kinase (PI3K) and the mitogen-activated protein
kinase (MAPK), both result in cell differentiation, prolif-
eration and anti-apoptosis [16,22]. There are currently 4
types of IRS proteins [48], the effects of IRS-1 and 2 are
opposite to that of IRS-3 and 4 [16]. IRS-1 is the most well
understood IRS, and it is essential to the activation of IGF-
1R. When IRS-1 was abundant, it promoted cell size
growth, activated p70 S6K, a kinase that promotes cell pro-
liferation and leads to transformation [49]. Meanwhile,
IRS-1 turned off IGF-1R’s stimulation for differentiation
through its phosphotyrosine binding (PTB) domain, there-
fore inhibited differentiation and stimulated transforma-
tion [50]. When IRS-1 was inhibited or malfunctions, such
as the case when there was a mutation of its PTB domain,
transformation no longer continued and these cells tend
to undergo differentiation. The inhibitor of p70S6K such as
rapamycin, which is an inhibitor in the mammalian target
of rapamycin (mTOR) pathway, also produced similar
effects as the mutated PTB domain, thus cells exposed to
rapamycin tend to grow slowly with good differentiation
[51].
(4) IGF Binding Proteins
(A) IGFBP-3 One of the key regulators of IGF expres-
sion is the family of IGF Binding Proteins (IGFBPs) [6].
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Figure 2 IGF-IR downstream signal transduction. The activated
IGF-IR initiates signalling through two separate connections, the
insulin receptor substrate (IRS) and the Shc proteins. Both IRS and
Shc proteins can in turn activate both MAP Kinase (MAPK) and PI3
kinase (PI3K) pathways. MAPK pathway leads to activation of Ras
and then ERK, and PI3K pathway activates AKT/mTOR, both then
stimulate signals for mitogens.
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The predominant form of IGFBPs is IGFBP-3, which
comprises of 90% of all IGFBPs in serum [15,16], and it
binds to the majority of circulating IGF-1 and IGF-2.
IGFBPs that include IGFBPs 1, 3, 4 and 6 usually limit
IGF access to IGF-1 receptor, therefore decrease the
availability of IGFs and diminish their effects on cancer
progression [6].
(B) Other IGFBPs Other IGFBPs such as IGFBP-2 and 5
seem to increase the bioavailability of IGF ligands, there-
fore play an opposite role of IGFBP-3 [6]. Both in vitro
and in vivo evidence support the observation that anti-
sense strategy targeting IGFBP-2 or 5 decreases neoplastic
growth [6,52].

Evidence of IGF Axis Involvement in
Hepatocarcinogenesis
(1) Role of IGF Ligands
(A) IGF-1 In human HCC tissues, IGF-1 mRNAs were
expressed at lower levels than the surrounding normal
liver tissues [18,53]. This could be related to the observa-
tion that growth hormone receptor level was low in HCC
tissues [18,53], and growth hormone stimulation thus
was low, and the downstream signals such as IGF-1 level
would be accordingly low.
(B) IGF-2
IGF-2 overexpression and its effects on apoptosis and
angiogenesis in HCC IGF-2 has been reported to be
overexpressed in animal models of hepatocarcinogenesis
and in human HCC [50,54-60]. IGF-2 has been linked
to carcinogenesis by providing a stimulatory effect on
cell proliferation and angiogenesis, both critical in HCC
development. In a study using 2 human HCC cell lines,
high levels of IGF-2 were demonstrated, and anti-sense
oligonucleotides used to target IGF-2 mRNA showed
reduction of IGF-2 mRNA and protein levels, which
corresponded to a remarkable decrease in cell prolifera-
tion [18,61]. In a study of molecular profiling of human
HCC samples, overexpression of IGF-2 was related to a
cluster of gene signature that downregulates apoptosis
[62], indicating a potent anti-apoptotic effect of IGF-2.
The relationship between IGF-2 and angiogenesis was
demonstrated in human HCC cell cultures. Under
hypoxia environment, IGF-2 mRNA levels in human
HCC tissue increased, and IGF-2 overexpression directly
increased vascular endothelial growth factor (VEGF)
mRNA and protein levels [63]. It suggested a pro-angio-
genic effect of IGF-2, an important pathway in HCC
development and metastasis.
Animal models of IGF-2 and preneoplastic lesions for
HCC In rodents, diethylnitrosamine (DEN) induced 100%
development of glycogen rich hepatic lesions, which are
precursors to HCC, and up to 98% of such lesions
expressed IGF-2 mRNA [54,64]. These results highlight a
vital role of IGF-2 early in hepatocarcinogenesis. The

expression of IGF-2 has been shown to be a common
pathway leading to hepatocarcinogenesis regardless of the
species or the process of HCC development [65]. In
transgenic mice where IGF-2 levels were persistently 20
times higher than normal control mice, a diverse spec-
trum of tumors were seen at a much higher frequency
than the controls, and HCC was the most common
malignancy by 18 months of age [66].
Re-emergence of fetal IGF-2 expression in human HCC
The expression of IGF-2 is very unique in fetal develop-
ment, as it is maternally imprinted; therefore it is mono-
allelic [6,18]. In adults, IGF-2 becomes biallelic [18]. In
fact, IGF-2 overexpression in HCC showed re-emergence
of fetal IGF-2 by the identification of fetal promoter acti-
vation [67]. In all 15 samples of human HCC tested in a
study, the overexpression of maternally imprinted fetal
IGF-2 was demonstrated [51]. In a study from Hong
Kong, 30 HCC samples from patients examined using
northern blot analysis showed more than 93% of the
adult promoter IGF-2 transcripts were repressed, while
93% of the adult type IGF-2 transcripts were detected in
nontumourous tissues [68,69].
The Interaction of IGF-2 with HCC risk factors The
importance of IGF-2 in HCC development is further
demonstrated in its relationship with risk factors of
HCC such as hepatitis B and C [70]. In patients with
chronic hepatitis C and cirrhosis, the overexpression of
IGF-2 was clearly related to hepatitis C viral replication
[71]. In patients with chronic hepatitis B, HBV X pro-
tein stimulated IGF-2 expression by binding to the fetal
promoter of IGF-2, therefore directly stimulating fetal
transcript expression of IGF-2 in HCC [72]. Further-
more, aflatoxin has been shown to be synergistic with
hepatitis B in the carcinogenesis of HCC, and p53 gene
mutation induced by aflatoxin increased the expression
of IGF-2 in HCC patients with hepatitis B infection [73].
(2) Role of IGF Receptors
IGF-1R overexpression in vitro in HCC In a study
where 10 HCC cell lines (including PLC HCC cell line)
were tested, all of them showed elevated IGF-1R mRNA
[50]. Furthermore, the addition of both IGF-1 and IGF-
2 to the PLC HCC cell line induced increased cell pro-
liferation in a dose dependent manner, showing that the
major tumor promoting effects of IGF ligands on HCC
are exerted through IGF-1R [46].
IGF-1R overexpression in animal models of hepatocar-
cinogenesis In a model utilizing pancreatic islet trans-
plantation into the livers of diabetic rats, a well
established series of events led to development of HCC
from preneoplastic foci [74]. When HCC developed from
preneoplastic foci in this animal model, the expression of
IGF-1R significantly increased, which could explain the
phenomenon that the increase in mitotic activity was
more than the increase in the rate of apoptosis [18,75].
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IGF-1R is therefore crucial in both the development of
and the growth of HCC, making IGF-1R an ideal target
in the treatment of HCC.
The Inhibitory effects of IGF-2R on IGF-1R IGF-2R is
closely associated with transforming growth factor b
(TGF-b), a very potent growth inhibitor [76]. For
instance, in human HCC tissues, the levels of both TGF-
b and IGF-2R protein were reduced compared to those
in adjacent normal liver tissues [66]. The expression of
IGF-2R was significantly lower in several HCC cell lines
in vitro, in HCC animal models and in human HCC tis-
sues [77,78]. The role of IGF-2R in IGF axis appears to
serve as a site for IGF-2 clearance, therefore reduces the
availability of a potent ligand for IGF-1R, the major gate-
way for carcinogenesis, tumor growth and proliferation.
IGF-2R therefore provides an indirect inhibitory effect on
IGF-1R.
(3) Role of IGF Substrates
(A) IRS-1 The overexpression of IRS-1 has been
described in human HCC cell lines and tissues [79].
IRS-1 leads to activation of downstream mitogens such
as PI3K and MAPK. In human HCC cell lines, IRS-1
developed acquired resistance to apoptosis, indicating a
potent role of IRS-1 in the promotion of continued cell
growth in HCC [79].
(B) IRS-2 IRS-2 is a major downstream signal of insulin
pathway in the liver, and its function in hepatocarcinogen-
esis is demonstrated in animal models. When SV40 large
T antigen or DEN was applied in murine models, IRS-2
overexpression was detected in both preneoplastic foci
and HCC lesions, with higher levels in HCC nodules [47].
A similar observation was reproduced in human HCC cell
lines and tissue specimens, suppression of IRS-2 levels led
to increased apoptosis. Together with IRS-1, IRS-2 also
contributes to hepatocarcinogenesis, as demonstrated by
its early emergence in preneoplastic lesions, and its anti-
apoptotic property. IRS-1 and 2 therefore create an opti-
mal environment for HCC growth.
(4) Roles of IGFBPs
(A) IGFBP-3 In a study comparing IGFBP-3 levels in
human normal liver, cirrhotic liver and HCC, the expres-
sion of IGFBP-3 mRNA levels was significantly reduced
in HCC [80]. In a human HCC cell line, addition of exo-
genous IGFs stimulated mitosis, but this mitogenic effect
was greatly reduced by IGFBP-3 [46]. Furthermore, addi-
tion of recombinant human IGFBP-3 induced growth
inhibition of the human HCC cell lines HepG2 and PLC
[81]. The role of IGFBP-3 on tumor growth inhibition
can be further explained by IGFBP-3’s induction by p53,
a tumor suppressor gene essential in apoptosis and cell
cycle arrest [15].
(B) IGFBP-7 In a study examining radiation induced
HCC mouse model, northern analysis showed decreased
expressions of IGFBP-7 (a low affinity IGFBP) in HCC

compared to normal liver tissues, which was inversely
related to anchorage-independent growth in HCC cell
lines [82]. A similar trend of reduced IGFBP-7 level was
seen in human HCC tissues. When IGFBP-7 cDNA was
injected to radiation induced HCC mouse model, the
volume of HCC was greatly reduced. IGFBP-7, although
has relatively low affinity toward IGF-1 and IGF-2,
exerts a similar anti-tumor effect as its high affinity
IGFBP counterpart IGFBP-3.
(C) IGFBP protease inhibitors Metalloproteinase belongs
to IGFBP proteases that degrade IGFBP-3. In a transgenic
murine HCC model overexpressing the inhibitor of
metalloproteinase (TIMP1), IGFBP-3 degradation was
reduced, and serum level of IGFBP-3 was subsequently
increased, which decreased the bioavailable IGF-2 ligand
and its downstream signalling. This resulted in reduced
liver hyperplasia, despite the activation of IGF-2 by a
strong oncogene such as SV40 T antigen [83]. It provided
evidence that IGFBP proteases and IGFBPs are equally
important in the regulation of IGF ligand bioavailability
and their downstream effects on IGF axis activation.

Targeting IGF System and Early Clinical Trials
There are several strategies in the therapeutic considera-
tions involving IGF axis in the treatment of HCC and
other tumors. The first method targets the ligand to
reduce its activity, the second inhibits the function of
the receptor, and the third modulates the downstream
signals of IGF-1R pathways (Table 1).

(1) Anti-Ligand Approach
One of the first drugs to be tested was somatostatin. How-
ever, as it only lowered serum IGF-1 level to a modest
degree without achieving desired reduction, it showed no
anti-neoplastic activity [84]. Metformin lowered insulin
levels in patients with hyperinsulinemic states such as in
obesity, a major risk factor for HCC. The reduction of
insulin was significant, yet its effect on IGF-1 and IGF-2
was minimal, making metformin a weak candidate in the
treatment of HCC [85]. Ongoing studies utilizing growth
hormone antagonists or IGF ligand specific antibodies
have demonstrated some activity in prostate and breast
cancer cell lines, suggesting their potential in the treat-
ment of HCC [86,87]. MEDI-573 is a first in human neu-
tralizing antibody against both IGF-1 and IGF-2, has
shown promising activity in vivo based on its inhibition of
downstream IGF signalling [88], and is now being tested
in phase I solid tumors.

(2) Anti-Receptor Approach
(A) Monoclonal antibodies of IGF-1R
Single agent activity of monoclonal antibodies of IGF-
1R in vitro, in vivo and in phase I solid tumors The
majority of anti-IGF strategies focused on IGF-1R, the
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key component of IGF axis that provides mitogenic sig-
nal for tumor growth. The most common strategy uti-
lized is the receptor-specific antibodies. For instance,
pharmacodynamic studies of MK-0646 (Merck) on neo-
plastic tissues demonstrated reduction of phosphorylated
AKT and phosphorylated S6 kinase, two downstream
targets of IGF-1R. MK-0646 also decreased tumor pro-
liferation as shown by reduction in the proliferation
marker Ki67 [89,90]. This observation provided a ratio-
nale to use this class of antibodies in the treatment of
HCC, and it was supported by additional data generated
using IMC-A12 (Imclone), a human monoclonal anti-
body that blocks IGF-1R, both in vitro and in vivo [91].
In hepatoma cell lines, 2 hour incubation with IMC-A12
completely blocked downstream signalling of IGF-1R as
shown by the suppression of phosphorylated AKT and
phosphorylated S6 kinase [91]. In addition, 10 day treat-
ment with IMC-A12 in HCC xenografts led to 40%
reduction of tumor volume and 40% prolongation of
overall survival without additional toxicity compared to
control animals [91]. In a phase I study of refractory
solid tumors using IMC-A12 as a single agent, a patient
with HCC had stable disease for up to 9 months [92].
Monoclonal antibodies of IGF-1R in combination
with chemotherapy in Phase II and III studies One of
the most studied IGF-1R antibodies is CP-751871 (Pfi-
zer) and it showed rather promising activity in a phase

II study in patients with advanced non-small cell lung
cancer. When it was added to carboplatin and paclitaxel
as a first line regimen, the response rate increased from
32% to 46%. What was even more impressive was in
patients with squamous histology, the response rate was
as high as 71% [93]. The most common side effect in
this phase II study was hyperglycemia. The subsequent
ambitious Phase III study looked at patients with stage
IIIB or IV non-small cell lung cancer, and randomized
them to receive carboplatin and paclitaxel either with or
without CP-751871. This study was halted in late 2009
due to unexpected increase in fatal events in the experi-
mental arm [93], and it could be partially explained by
the most common side effect of hyperglycemia. The
consequence of IGF-1R inhibition leads to compensatory
increase of growth hormone stimulation that promotes
liver gluconeogenesis, resulting in hyperglycemia [94].
What we could learn from this surprising result is that
there are subsets of patients who could potentially bene-
fit from IGF-1R inhibitors such as CP-751871 [95]. For
instance, in the experimental arm, patients with low
IGF-1 levels (< 5 pg/ml) before treatment with CP-
75871 were more likely to suffer fatal events within 60
days of treatment. The same group of patients also had
much shorter median overall survival compared to the
ones with higher pretreatment IGF-1 levels (7 months
vs. 10.4 months). Conversely, for patients with higher

Table 1 Agents in clinical development that target the insulin-like growth factor pathway

Company Compound Mechanism of Action Phase of Clinical
Development

Dosing Types of Cancers Tested

MedImmune MDI-573 [89] Fully human monoclonal
antibody of IGF-1 and IGF-2

I IV every 3 weeks Solid tumors

Merck MK-0646 [90] Monoclonal antibody of IGF-
1R

II IV weekly, 3 weeks
on, 1 week off

Non-small cell lung cancer, small cell lung
cancer, prostate, breast, pancreas

Imclone IMC-A12
[91,99]

Fully human Monoclonal
antibody of IGF-1R

II IV every 1 or 2
weeks

HCC, Colorectal, pancreas, mesothelioma,
thymoma, prostate, head and neck

Biogen-Idec BIIB 022 [92] Monoclonal antibody of IGF-
1R

I/II IV every 2 weeks HCC, non-small cell lung cancer

Sanofi-
Aventis

AVE 1642 [98] Humanized antibody of IGF-
1R

I IV every 3 weeks HCC, multiple myeloma

Roche R1507 [118] Fully human IgG1
recombinant antibody of IGF-
1R

I Every 1 or 3 weeks Solid tumors and Lymphoma

Amgen AMG 479 [119] Fully human Monoclonal
antibody of IGF-1R

II/III IV every 2 weeks Pancreas, colorectal, Ewing’s sarcoma,
ovarian

Pfizer CP-751871 [93] Fully human Monoclonal
antibody of IGF-1R

II/III IV every 3 weeks Non-small cell lung cancer

OSI OSI-906 [100] Small molecule inhibitor of
IGF-1R

II/III Oral twice a day Adenocortical carcinoma, Ovarian

Novartis AEW54,
ADW742
[120,121]

Small molecule inhibitor of
IGF-1R

preclinical NA NA

BMS BMS-554417
[102]

Small molecule inhibitor of
IGF-1R

preclinical NA NA
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pretreatment IGF-1 levels, those who received the
experimental treatment that included CP-751871 had a
trend toward higher median overall survival compared
to those who received the standard chemotherapy (10.2
months vs. 7 months). Further analysis from the phase
II study also showed that IGF-1R was present in the
highest level in patients with squamous histology, which
could explain the observed high response rate in squa-
mous cell patients who received CP-75871 [96]. Such
observation was consistent with a presentation at ASCO
GI in 2011, in which data of 288 patients with HCC
were analyzed. In this study, pretreatment lower plasma
IGF-1 and higher plasma VEGF levels significantly cor-
related with advanced clinicopathologic parameters and
poor overall survival, with an optimal cut off point of 26
pg/mL and 450 pg/mL, respectively. The combination of
low IGF-1 and high VEGF predicted median overall sur-
vival of 2.7 months compared with 19 months for
patients with high IGF-1 and low VEGF (p < 0.0001)
[97]. Such information provided insights into the speci-
fic patient subsets in HCC where IGF-1 levels would
offer additional prognostic significance. Whether base-
line plasma IGF-1 levels could be used to predict
response to IGF axis inhibition in HCC remains to be
explored.
IGF-1R monoclonal antibodies in HCC IMC-A12 was
studied as a single agent in patients with advanced HCC
as a front line systemic therapy. This study unfortunately
was terminated due to futility. The pre-planned primary
endpoint of progression free survival rate at 4 months
was only 30% and median overall survival of 8 months
[98]. Up to 46% of patients developed grade 3-4 hypergly-
cemia, similar to what was seen in the phase II NSCLC
study of CP-751871 [93], thus raising the possibility that
hyperglycemia could be the dose limiting toxicity of IGF-
1R monoclonal antibodies. Hyperglycemia and its subse-
quent increase of growth hormone could also contribute
to the disappointing activity of this class of drugs.
BIIB022 (Biogen-Idec) is an anti-IGF-1R monoclonal anti-
body that blocks binding of both IGF-1 and IGF-2 to
IGF-1R [92]. It does not contain Fc effector function,
therefore can potentially minimize toxicities in healthy
tissues expressing IGF-1R [92]. This agent does not
appear to cause hyperglycemia, a common side effect of
receptor specific antibodies [92]. Hyperglycemia has been
attributed to insulin resistance secondary to high levels of
growth hormone, a compensatory reaction to IGF-1R
antibodies [94,95]. The class of IGF-1R monoclonal anti-
bodies share similar side effect profiles, including minimal
dose limiting toxicities. These favorable safety profiles
make them ideal candidates in the combination therapy
with current available chemotherapy or biologic therapy
[6]. BIIB022 showed inhibition of tumor growth in HCC
cell line HepG2, and this inhibitory effect was enhanced

by addition of sorafenib [92], the only FDA approved
medication for patients with advanced HCC. A planned
phase I/II study comparing sorafenib with or without
BIIB022 in patients with advanced HCC was terminated
due to a business decision of Biogen-Idec. AVE-1642
(Sanofi-Aventis) is another IGF-1R antibody that was
initially studied in advanced HCC patients in a phase I
study in combination with sorafenib [99], the study was
terminated not related to either efficacy or toxicity con-
cerns. Although IMC-A12 lacks single agent activity in
HCC, its combination with sorafenib could potentially
yield synergy. It is currently undergoing phase I study in
combination with sorafenib in patients with HCC, the
result of this clinical trial may help understand the clini-
cal benefits of combining IGFR-1R monoclonal antibodies
and sorafenib in HCC.
(B) Small molecule inhibitors of IGF-1R
A major advantage of small molecule inhibitor is its ability
to inhibit both IGF-1R and insulin receptor. Such ability
was demonstrated in several human tumor cell lines,
where phosphorylated IGF-1R and its downstream pro-
teins, including ERK and p70s6k were all effectively inhib-
ited by OSI-906 (OSI) [100]. In addition, it inhibited
phosphorylated insulin receptor in both primary human
hepatocytes and HCC cell line HepG2. IGF-1R and insulin
receptor interaction has been seen in many human tumor
cell lines after the appearance of IGF-1R monoclonal anti-
bodies. For instance, when IGF-1R phosphorylation was
reduced with the treatment of IGF-1R monoclonal anti-
body, phosphorylated insulin receptor also increased [100].
Even though IGF-1R plays a dominant role in the activa-

tion of IGF axis, insulin receptor becomes very important
when IGF-1R is blocked, such as the case with IGF-1R
monoclonal antibodies. When IGF-1R is blocked, all the
IGF-1 and IGF-2 (ligands for IGF-1R) are available to bind
insulin receptor. There are 3 ways how insulin receptor
activates the IGF axis. First, when IGF-1 levels increase
with IGF-1R inhibition, its binding to insulin receptor also
increases, which leads to more insulin receptor activation.
Second, IGF-2 usually binds to insulin receptor with very
low affinity, however; when IGF-2 fetal transcripts are
reactivated, such as in HCC, the affinity of IGF-2 for insu-
lin receptor increases dramatically. Additional insulin
receptor is therefore turned on through IGF-2. Third, the
overexpression of insulin receptor was demonstrated in
numerous human cancers including HCC, and its overex-
pression was linked to tumor growth and cell survival
[101].

BMS-554417
Several small molecule tyrosine kinase inhibitors of
IGF-1R such as BMS-554417 (Bristol-Myers-Squibb)
are under development [102-107]. There have been
encouraging in vitro and in vivo data in broad range
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of cancers with activated IGF axis. Current phase I
data on drug tolerability will provide more informa-
tion regarding the feasibility of such medications in
the potential treatment for advanced HCC.OSI-906
OSI-906 (OSI) is a potent tyrosine kinase inhibitor
of both IGF-1R and insulin receptor. The unique
advantage of OSI-906 over previous class of anti-IGF
drugs is its ability to minimize the activity of IGF-2
where IGF-1R inhibition alone will not be sufficient.
In cancers such as adenocortical carcinoma and
HCC, where insulin receptor binds to IGF ligands
with higher affinity, OSI-996 is able to inhibit both
insulin receptor and IGF-1R to achieve maximum
inhibition of the IGF axis [108-110]. A phase III
study using OSI-906 in patients with adenocortical
carcinoma is ongoing. OSI-906 is therefore consid-
ered one of the desirable drugs to be tested in
patients with HCC.

(3) Approach that targets other pathways
AMP-activated protein kinase (AMPK) pathway is one of
the upstream signalling pathways above mTOR [6]. The
AMPK activation effects are quite complex, and although
experimental models of AMPK activators demonstrate
their anti-proliferation effects, they could also potentiate
cell survival after exposure to stress [110-113]. Additional
studies on activators of AMPK are required to under-
stand the role of such class of medications prior to its
use as anti-neoplastic agents. Another active downstream
signal of IGF axis is the mTOR pathway, which is down-
stream of PI3K/AKT signal. Everolimus (Novartis) is
being studied in patients with sorafenib refractory HCC
in a phase III trial. A third active pathway involves
MAPK, and inhibitors of this pathway are currently in
very early phase of investigation [114].

(4) Combination Therapies
As most of IGF-1R inhibitor molecules have minimal dose
limiting toxicities in phase I studies, and IGF-1R activation
reduces responsiveness of antineopalstic therapies [6], it is
possible to combine IGF-1R inhibitors with certain che-
motherapies. For instance, IGF-1R overexpression has
been associated with resistance to epidermal growth factor
receptor (EGFR) inhibitors and mTOR inhibitors
[115,116]. The idea of combining IGF-1R inhibitors and
agents such as erlotinib or everolimus could be a promis-
ing strategy in the management of advanced HCC.

Conclusions
In recent years, the understanding of IGF pathway in
cancer has led to development of IGF inhibitors which
show promising anti-cancer signals in early phase I stu-
dies. According to the World Health Organization, more

than 50% of cancers come from countries where obesity
is a prominent risk factor, and that cancer mortality now
is more than that of tuberculosis, malaria and AIDS com-
bined [117]. In the next 3 decades, the incidence of HCC
in the US is expected to be among the fastest growing
cancers partly due to the increasing incidence of obesity
[6,12]. IGF axis is an essential pathway in the develop-
ment of hyperinsulinemia, a condition closely related to
obesity, which in turn increases the risk for HCC [6].
Agents that target the IGF axis, an active pathway in car-
cinogenesis and progression of HCC, provide an alterna-
tive strategy in the management of HCC. We are only in
the beginning era of realizing the complexities of IGF
pathway, additional research in the understanding of
both basic science and clinical applications of anti-IGF
agents will provide insights into the value of IGF inhibi-
tion in the treatment of HCC.
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