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Abstract 

Inflammation is a fundamental defensive response to harmful stimuli, but the overactivation of inflammatory 
responses is associated with most human diseases. Reactive oxygen species (ROS) are a class of chemicals that are 
generated after the incomplete reduction of molecular oxygen. At moderate levels, ROS function as critical signal-
ing molecules in the modulation of various physiological functions, including inflammatory responses. However, 
at excessive levels, ROS exert toxic effects and directly oxidize biological macromolecules, such as proteins, nucleic 
acids and lipids, further exacerbating the development of inflammatory responses and causing various inflamma-
tory diseases. Therefore, designing and manufacturing biomaterials that scavenge ROS has emerged an important 
approach for restoring ROS homeostasis, limiting inflammatory responses and protecting the host against dam-
age. This review systematically outlines the dynamic balance of ROS production and clearance under physiological 
conditions. We focus on the mechanisms by which ROS regulate cell signaling proteins and how these cell signaling 
proteins further affect inflammation. Furthermore, we discuss the use of potential and currently available-biomaterials 
that scavenge ROS, including agents that were engineered to reduce ROS levels by blocking ROS generation, directly 
chemically reacting with ROS, or catalytically accelerating ROS clearance, in the treatment of inflammatory diseases. 
Finally, we evaluate the challenges and prospects for the controlled production and material design of ROS scaveng-
ing biomaterials.
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Introduction
Inflammation is a fundamental defensive response that 
eliminates invading pathogens and foreign bodies to 
restore homeostasis [1]. However, the overactivation of 
inflammatory responses inevitably harm the host and 
causes diseases, such as cancer, sepsis, and autoimmun-
ity. This complex biological process that causes clinical 
symptoms, including heat, pain, redness, and swelling, is 
broadly triggered by infection and tissue damage [2]. As 
a basic pathological process, inflammation is associated 
with most human diseases. For instance, coronavirus dis-
ease 2019 (COVID-19), which has caused substantial dis-
ruption to health care systems and economies worldwide, 
is an inflammatory disease, and pneumonia is its most 
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common complication [3]. Despite considerable efforts, 
inflammation currently remains one of the most compli-
cated and difficult medical challenges in the world. Thus, 
inflammatory mediators that regulate the occurrence and 
development of inflammatory responses have become 
promising therapeutic targets.

The collect term “reactive oxygen species (ROS)” 
describes the chemical species that are formed upon 
incomplete oxygen reduction, which are significant medi-
ators of inflammation [4]. ROS mainly include hydroxyl 
radicals (·OH), superoxide anions  (O2

−), singlet oxygen 
(1O2), and hydrogen peroxide  (H2O2) [5]. Studies have 
shown that excessive ROS are highly reactive and can 
kill cells in the body by oxidizing cellular components, 
including proteins, lipids, and nucleic acids, leading to 
inflammation [6]. Additionally, ROS function as signal-
ing molecules and regulate various types of kinases and 
transcription factors in the initiation and development of 
inflammation. It is widely believed that ROS participate 
in inflammatory responses and promote inflammation in 
a variety of diseases, including diabetes [7], inflammatory 
bowel disease (IBD) [8], chronic obstructive pulmonary 
disease (COPD) [9], and osteoarthritis (OA) [10].

Based on the close relationship between ROS and 
inflammation, ROS scavenging biomaterials have been 
manufactured to limit inflammation and protect the 
host from damage that is caused by dysregulated inflam-
matory responses. ROS scavenging biomaterials allevi-
ate inflammation by directly or indirectly balancing the 
production and elimination of ROS. Traditional anti-
inflammatory drugs, such as corticosteroids and non-
steroidal anti-inflammatory drugs, can cause side effects 
that affect multiple organs, including gastrointestinal 
and cardiovascular complications and renal failure [11]. 
Thus, ROS scavenging biomaterials are strong supple-
ments to currently available clinical drugs in the treat-
ment of inflammation [12]. However, current research on 
ROS scavenging biomaterials lacks a systematic and com-
prehensive summary of their anti-inflammatory mecha-
nisms. Therefore, it is of great importance to review the 
molecular mechanisms by which ROS scavenging bio-
materials function and classify them according to their 
scavenging mechanisms; this may guide the further com-
prehension, design, manufacture, and evaluation of ROS 
scavenging biomaterials (Fig. 1).

The physiological balance of ROS
Under normal physiological conditions, the produc-
tion and elimination of intracellular ROS are dynami-
cally balanced through different pathways so that ROS 
can be constantly maintained at relatively low levels [13]. 
When this balance is stable, ROS play their typical physi-
ological role without causing dysregulated inflammatory 

responses. However, the overproduction and/or insuffi-
cient elimination of ROS may lead to high levels of ROS, 
resulting in excessive inflammation. Therefore, it is essen-
tial to determine the balance of ROS under physiologi-
cal conditions to understand the working mechanisms 
and principles of ROS scavenging biomaterials. Here, we 
introduce three main mechanisms of ROS production 
and two main mechanisms of ROS elimination (Fig. 2).

ROS production
The majority of ROS originate from the mitochondrial 
electron transport chain (METC). During the cellular 
oxidation of fuels, electrons that are transferred through 
the METC are coupled to the generation of a force that 
moves protons across the mitochondrial inner mem-
brane (MIM). During this process, most electrons can 
be safely transferred from donor to acceptor molecules 
in various redox pathways. However, electrons may pre-
maturely leak from complexes I, II, and III to mediate the 
one-electron reduction of oxygen to  O2·−, which is then 
dismutated to  H2O2 (Fig.  3) [14–16]. When the perme-
ability of the mitochondrial membrane increases, ROS 
that are produced by the METC in mitochondria can 
be released into the cytosol and induce inflammation 
via signal transduction or toxic destruction of biological 
macromolecules [17].

In addition, ROS are also produced as by-products of 
several cellular enzymes, such as nicotinamide adenine 
dinucleotide phosphate oxidases (NOXs), xanthine oxi-
doreductase (XOR), and lipoxygenases (LOXs). The NOX 
family is a family of multiprotein complexes with 7 mem-
bers, which include NOX-1 to NOX-5 and dual oxidases 
(DUOX)-1 and DUOX-2. NOXs generate ROS through 
the NOX catalytic subunit, which catalyzes the trans-
fer of electrons from nicotinamide adenine dinucleotide 
phosphate (NADPH) to molecular oxygen. Among all 
the NOXs, DUOX and NOX-4 primarily generate  H2O2, 
while the others mainly generate superoxide [18, 19]. In 
addition, NOX-2 produces ROS during respiratory burst. 
During this process, NOX-2 is assembled in a phagosome 
during the phagosome maturation stage and accelerates 
the reaction of NADPH with molecular oxygen to pro-
duce  NADP+, protons, and  O2·−. Because of the acidic 
environment of phagosomes,  O2·− is dismutated into 
 H2O2, which is subsequently converted to other ROS 
[19, 20]. XOR is a structurally complicated molybdofla-
voenzyme that catalyzes the hydroxylation of xanthine to 
uric acid. This enzyme has two interchangeable forms in 
mammals: xanthine dehydrogenase (XDH) and xanthine 
oxidase (XO). It is believed that XDH is the dominant 
form that is present in healthy tissues, and it is charac-
terized by  NAD+ as an electron acceptor. In contrast, 
XO can produce ROS using  O2 as a terminal electron 
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acceptor [19]. LOXs are a group of dioxygenase enzymes 
that catalyze the oxygenation of arachidonic acid (AA) 
and polyunsaturated fatty acids (PUFAs) to produce 
hydroperoxyl derivatives [21]. LOXs are designated 5-, 
8-, 12-, and 15-LOX, depending on the site where oxygen 
is inserted in AA. During LOX-catalyzed metabolic pro-
cesses, ROS are produced as unstable by-products of AA 
hydroperoxide [22]. In addition, leukotrienes produced 

by 5-, 12-, and 15-LOX induce NADPH oxides to activate 
ROS production [23].

Ionizing radiation (IR) is another source of ROS. In 
general, the production of ROS upon exposure to IR 
results from water radiolysis. Specifically, low linear 
energy transfer (LET) IRs, including γ-rays and X-rays, 
induce the excitation and ionization of water molecules, 
leading to the production of ROS (mainly free radicals). 

Fig. 1 This review systematically outlines the dynamic balance of reactive oxygen species (ROS) production and elimination in physiological states. 
It further elaborates on the regulatory mechanisms of ROS in inflammatory signaling pathways and discusses the therapeutic potential of ROS 
scavenging biomaterials for inflammatory diseases, which may help improve the development of anti-inflammatory biomaterials
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Furthermore, reactive radicals can also react with other 
water and oxygen molecules and thus produce more 
reactive radicals through indirect effects [24].

ROS elimination
To maintain homeostasis, living organisms aim to con-
trol highly reactive ROS via antioxidant networks [15]. 
The antioxidant system of an organism is defined as an 
oxidative defense system. This defense system consists of 
substances in lower concentrations than oxidizable sub-
strates and can delay or prevent oxidation in the body. 

It is worth noting that the antioxidant defense system 
should not significantly decrease ROS levels but rather 
permit sufficient ROS levels to be maintained so they can 
perform their proper functions. The complicated ROS 
elimination system comprises endogenous antioxidant 
enzymes, mainly including superoxide dismutase (SOD), 
catalase (CAT), and glutathione peroxidase (GPx), as well 
as low-molecular-weight scavengers, including vitamins, 
β-carotene, coenzyme Q, selenium and zinc.

Endogenous antioxidant enzymes effectively eliminate 
ROS through catalysis to prevent inflammation. SODs 

Fig. 2 Tai Chi diagram: production and elimination of ROS. ROS are mainly generated from the mitochondrial electron transport chain 
and as by-products of several cellular enzymes, including NOX, XOR, and LOX. To maintain balance, ROS is controlled with the help of antioxidant 
networks. The ROS elimination system comprises endogenous antioxidant enzymes and several low-molecular-weight eliminators, including SOD, 
CAT, GPx, vitamins, β-carotene, coenzyme Q, selenium, and zinc
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found in human are divided into cytosolic CuZn-SOD 
(SOD1), mitochondrial Mn-SOD (SOD2), and extracellu-
lar (SOD3) SOD enzymes. SODs seem to be the first line 
of defense in ROS elimination. They can be rapidly acti-
vated under some circumstances and catalyze superoxide 
into molecular oxygen and  H2O2. This process converts 
highly reactive ROS into milder species [25]. In addition, 
CAT neutralizes  H2O2 by decomposing  H2O2 from vari-
ous sources into molecular oxygen and water [17]. GPxs 
exert their antioxidant effect mainly by using glutathione 
(GSH) as a reductant to accelerate the reaction of  H2O2 
into water via catalysis [26].

Low-molecular-weight ROS scavengers can activate 
antioxidant enzymes or terminate oxidative chain reac-
tions [17]. Vitamin D, for example, counteracts the 
activity of NOX and increases the activity of antioxi-
dant enzymes to accelerate ROS elimination [27]. Vita-
min E, as a peroxyl radical scavenger that stops chain 
reactions, donates its phenolic hydrogen to peroxyl 
radicals and thus forms tocopheroxyl radicals, which 

are inactive, thus stopping oxidative chain reactions 
[28]. In addition, zinc inhibits NOX-2 from exerting its 
antioxidant effect [29]. However, there are also studies 
showing that the accumulation of zinc in mitochondria 
can increase mitochondrial ROS (mtROS) levels and 
subsequently activate the downstream signaling mole-
cule nuclear transcription factor-kappa B (NF-κB) [30]. 
In addition to the vitamins and minerals mentioned 
above, many metabolites, including uric acid, bilirubin, 
and melatonin, also exhibit antioxidative abilities [17].

Regulating ROS production and elimination in the 
body to achieve homeostasis is a potential mechanism 
for achieving anti-inflammatory effects. Many bio-
materials have been designed and fabricated based on 
physiological mechanisms to regulate the levels of ROS. 
However, the physiological regulatory mechanisms are 
still poorly understood, limiting the ability to construct 
a systematic network. We still need to carefully eluci-
date these mechanisms to prevent additional disruption 
and disorders in the body.

Fig. 3 Mitochondrial electron transport chain: oxidative phosphorylation, oxidant production, and measurement methods (created with figdraw). 
During the cellular oxidation of fuels, electron transfer through the complexes of the ETC is coupled to the genesis of a proton motive force 
across the mitochondrial inner membrane (MIM). Electrons leak prematurely from complexes I, II, and III to mediate the one-electron reduction 
of oxygen to  O2·−, which then is dismutated to  H2O2
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ROS signal transduction in inflammation
Classically, ROS are considered lethal defense mole-
cules that are released by neutrophils to destroy exoge-
nous pathogens that invade the body. Different levels of 
ROS cause different effects. In basic life activities, ROS 
at the physiological level is in a state of equilibrium and 
do not damage cells. When the ROS homeostasis are 
disrupted, superabundant ROS can also damage bio-
macromolecules, including proteins, lipids, and nucleic 
acids, in this process, consequently leading to vari-
ous inflammatory diseases. Nevertheless, an increas-
ing amount of evidence suggests that in contrast to the 
destruction caused by high levels of ROS, at moderate 
levels, ROS play central roles as second messengers in 
modifying a variety of signaling molecules to regulate 

inflammation [6]. Under pathological conditions, ROS 
in cells may transmit redox signals through the revers-
ible oxidation of signaling molecules, resulting in per-
manent changes in inflammatory gene expression [9]. 
Studies have shown that ROS affect multiple inflamma-
tory signaling pathways, including the nod-like  recep-
tor  family  pyrin  domain-containing  3 (NLRP3) 
inflammasome signaling pathway, NF-κB signaling 
pathway, and MAPK signaling pathway (Fig. 4). There-
fore, a systematic summary of the mechanisms by 
which ROS act on cell signaling proteins and how these 
cell signaling proteins further affect inflammation is 
crucial to thoroughly understand the roles of ROS in 
inflammation (Table 1).

Fig. 4 Signal transduction of ROS in inflammation. ROS plays a central role as the second messenger in modifying a variety of signaling molecules 
to regulate inflammation. They affect multiple inflammatory signaling pathways, including the NLRP3 inflammasome signaling pathway, the NF-κB 
signaling pathway, the MAPKs signaling pathway, the JAK/STAT signaling pathway, the Nrf2 signaling pathway, and the PI3K/AKT signaling pathway
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The NLRP3 inflammasome signaling pathway
Inflammasomes are a group of intracellular multimeric 
protein complexes that are formed by germline-encoded 
pattern-recognition receptors (PRRs) [31]; among 
PRR family members, NLRP3 is the most extensively 
described. NLRP3 is a tripartite protein that consists of 
an N-terminal pyrin domain (PYD), a central nucleotide-
binding or oligomerization domain (NACHT), and a 
C-terminal leucine-rich repeats (LRRs) motif [32]. The 
inflammasome that is formed by NLRP3 is structurally 
composed of the Nod-like receptor protein NLRP3, the 
adaptor protein ASC and caspase-1 [33], and this inflam-
masome plays an important role in destroying exog-
enous pathogens. Caspase-1 is the effector component 
of the NLRP3 inflammasome and is activated through 
proximity-induced autocatalytic activation upon recruit-
ment to the NLRP3 inflammasome. Activated caspase-1 
promotes inflammation by cleaving pro-interleukin-1β 
(pro-IL-1β) and pro-IL-18 into their mature and bio-
logically active forms [31]. In addition to proinflamma-
tory cytokine production, the NLRP3 inflammasome 
also activates the cleavage of gasdermin D, triggering 
an inflammatory form of cell death called pyroptosis 
[34]. Through the effects described above, the NLRP3 
inflammasome plays a critical role in inflammation by 

promoting protective inflammatory reactions. However, 
dysregulation of the NLRP3 inflammasome results in 
pathological inflammation [35]. In fact, dysregulation of 
the NLRP3 inflammasome is related to the pathogenesis 
of numerous inflammatory disorders, such as diabetic 
nephropathy (DN) [36], tumor necrosis factor receptor-
associated periodic syndrome (TRAPS) [37], OA [38], 
and Alzheimer’s disease (AD) [39].

Understanding precisely how the NLRP3 inflamma-
some is activated is crucial for reducing the pathological 
inflammation that is caused by its dysregulation. How-
ever, the mechanism underlying its activation is still 
poorly understood. The traditional view is that NOX-
produced ROS activate the NLRP3 inflammasome [40]. 
However, increasing numbers of studies have shown that 
mtROS are the primary mediators of NLRP3 inflam-
masome activation. An et  al. indicated that the A. bau‑
mannii pathogen pattern-recognition receptor Omp34 
activates the NLRP3 inflammasome through mtROS in 
RAW264.7 cells [41]. More  intensively, Nakahira et  al. 
demonstrated that decreased expression of beclin-1 and 
another autophagy-associated protein, LC3B, might 
occur upstream of the production of mtROS, ultimately 
mediating inflammasome activation [42]. Thioredoxin 
(TRX), which has redox activity, is likely to be the target 

Table 1 ROS signaling pathways

Signaling pathways ROS targets Effects Related diseases References

The NLRP3
inflammasome
signaling pathway

TRX;
mtDNA;
Ca2 + influx

Production of IL-1β and
IL-18;
initiation of pyroptosis

Diabetic nephropathy;
TRAPS;
osteoarthritis;
Alzheimer’s disease

[31–47]

NF-κB
signaling pathway

IκBα;
IKKβ;
NIK

M1
macrophage transcription;
induction of TNF-α, IL-1β, IL-6, IL-12 
and COX-2 gene expression;
differentiation of Th1, Th17,
and Tfh cells

Inflammatory bowel disease;
arthritis;
sepsis;
gastritis;
asthma;
atherosclerosis

[6, 9, 48–60]

MAPKs
signaling pathway

ASK1;
mixed lineage kinase 3; growth factor 
receptors

M1
macrophage transcription;
production of TNF-α, IL-1β,
IL-8 and IL-10;
decrease in IL-12 and IFN-β produc-
tion

Asthma;
TRAPS;
COPD

[6, 9, 37, 61–70]

JAK/STAT 
signaling pathway

Activation of STAT by DNA methyla-
tion

Production of chemokines;
differentiation and apoptosis 
of hematopoietic cells

Rheumatoid arthritis;
psoriasis;
inflammatory bowel disease

[71–82]

Nrf2
signaling pathway

Keap1;
MAPKs;
PI3K;
NF-κB

Activation of heme
oxygenase-1, NADPH
dehydrogenase, SOD, and CAT 

Acute lung injury;
nephritis;
osteoarthritis;
inflammatory bowel disease

[83–96]

PI3K/AKT
signaling pathway

Activation of PI3K;
phosphorylation of AKT;
inactivation of
phosphatase and tensin homology

Expression and activation of
inflammatory mediators;
recruitment of inflammatory
cells; airway remodeling;
corticosteroid insensitivity

Chronic inflammatory
respiratory diseases

[6, 9, 66, 97–101]
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in NLRP3 inflammasome activation by ROS. Zhou et al. 
showed that thioredoxin-interacting protein (TXNIP) is 
released from TRX after the oxidation of TRX by ROS, 
which enables TXNIP to directly bind to the LRR and 
NACHT domains of NLRP3 and thus activate the NLRP3 
inflammasome [33]. Mitochondrial DNA (mtDNA) is 
another potential target in NLRP3 inflammasome activa-
tion. Shimada et al. showed that mtROS oxidize mtDNA, 
and its oxidized form binds to NLRP3, activating the 
NLRP3 inflammasome [43]. In contrast, macrophages 
that lack mtDNA cannot secrete interleukin-1β (IL-1β) 
when stimulated by NLRP3 activators. Additionally, it is 
believed that the ROS-induced  Ca2+ influx is linked to 
the activation of the NLRP3 inflammasome. To support 
the close relationship between  Ca2+ and the inflamma-
some, Lee et  al. suggested that a mouse  Ca2+-sensing 
receptor activates NLRP3 by increasing the intracellular 
 Ca2+ concentration, which occurs independently of tra-
ditional receptors [44]. In fact, Murakami et al. demon-
strated that many NLRP3 activators mobilize  Ca2+ and 
that blocking  Ca2+ signaling can inhibit NLRP3 inflam-
masome activation [45]. Multiple targets are possible 
mediators of ROS-induced NLRP3 inflammasome activa-
tion. ROS also initiate NLRP3 inflammasome activation 
through the ROS-dependent transcription factor NF-κB. 
In turn, NLRP3 inflammasome-mediated activation of 
inflammatory cells and secretion of IL-1β generate ROS 
and disrupt the endogenous antioxidant enzymes SOD 
and CAT, resulting in the accumulation of ROS [46]. In 
summary, there is likely a positive loop in ROS-mediated 
NLRP3 inflammasome activation, which suggests that 
ROS serve not only as triggers but also as effector mol-
ecules in activating the NLRP3 inflammasome [46].

However, the mechanism underlying NLRP3 inflam-
masome activation is still partially controversial. 
Muñoz-Planillo et  al. suggested that ROS production 
is unnecessary for NLRP3 activation [47]. Instead, the 
permeation of the cell membrane to  K+ and  Na+ is the 
only mechanism that is needed for the activation of the 
NLRP3 inflammasome. In addition, Groß et al. revealed 
a  K+  efflux-independent mechanism  of NLRP3 activa-
tion, suggesting that the mobilization of  K+ is not neces-
sary for NLRP3 inflammasome activation [35]. Although 
further research is needed to reveal the exact mechanism 
by which ROS activate the NLRP3 inflammasome, it is 
clear that ROS and NLRP3 inflammasome activation are 
related.

NF‑κB signaling pathway
NF-κB is composed of RelA (p65), c-Rel, RelB, p50 (NF-
κB1), and p52 (NF-κB2), and this family of transcrip-
tion factors forms more than twelve different identified 

heterodimers and homodimers. A conserved Rel homol-
ogy domain (RHD) is present in all NF-κB subunits, and 
this domain promotes dimerization and DNA binding 
[48].

In inactive cells, NF-κB is maintained in the cytoplasm 
via interaction with a member of the IκB family of inhibi-
tor proteins, such as IκBα. An initiating signal activates 
the IκB kinase (IKK) complex, phosphorylating IκBα at 
two N-terminal serine residues. Phosphorylation causes 
the ubiquitination and proteasomal degradation of IκBα, 
resulting in the nuclear translocation of NF-κB com-
plexes and the expression of target genes via interaction 
with high affinity to κB components. This is the most 
extensively studied canonical pathway of NF-κB activa-
tion [9, 48, 49]. In contrast, the noncanonical NF-κB-
activating pathway depends on IKKα and activates p52/
RelB complexes by triggering the proteolysis of the p52/
p100 precursor [6].

A well-acknowledged function of NF-κB is the regu-
lation of inflammation. NF-κB is a core mediator in the 
induction of proinflammatory gene transcription and the 
regulation of immune cell functions. In fact, NF-κB is 
crucial for promoting the transcription of several inflam-
matory genes, such as those encoding TNF-α, IL-1β, 
IL-6, IL-12, and cyclooxygenase-2 (COX-2), in M1 mac-
rophages [50]. In addition to mediating the transcription 
of many proinflammatory genes, NF-κB also regulates 
inflammatory T cell activation, differentiation, and func-
tion. NF-κB facilitates the differentiation of  CD4+ T cells 
to T-helper1 (Th1) cells and mediates the production of 
cytokines such as IL-12, which promote Th1 differen-
tiation. Th1 cells secrete IFN-γ, a critical cytokine that 
enhances cellular immunity and is involved in inflam-
matory processes. Furthermore, several NF-κB members 
have also been demonstrated to facilitate Th17 and T fol-
licular (Tfh) cell responses [50].

NF-κB is chronically activated in various inflamma-
tory disorders, including IBD, arthritis, sepsis, gastritis, 
asthma, and atherosclerosis [49]. For instance, NF-κB 
plays an important role in gut homeostasis, and its dys-
regulation results in an uncontrolled inflammatory state 
that is commonly observed in IBD. The pathogenesis of 
IBD is closely related to the expression of various proin-
flammatory mediators, most of which are produced via 
the NF-κB signaling pathway. Furthermore, many of the 
genes that have been shown to be for IBD development 
can drive NF-κB activation or lead to the dysregulation of 
NF-κB inhibitory pathways [51].

Currently, increasing numbers of studies have 
focused on the correlation between ROS and NF-κB. 
Schreck et  al. were the first to indicate (in 1991) that 
the direct addition of  H2O2 to the culture medium of a 
subclone of Jurkat cells (Jurkat JR) can activate NF-κB 
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[52]. Later, Chandel et  al. demonstrated that mtROS 
are indispensable for the hypoxic activation of NF-κB 
[53]. In addition, Lee et  al. used a murine model to 
demonstrate that an antioxidant, L-2-oxothiazolidine-
4-carboxylate (OTC), markedly decreases NF-κB trans-
location into the nucleus and proinflammatory gene 
transcription. These results proved from another per-
spective that ROS mediate the activation of NF-κB [54].

However, how ROS regulate NF-κB remains unclear 
and controversial (Fig.  5). Takada et  al. demonstrated 
that  H2O2 induces serine phosphorylation in the 
NF-κB p65 subunit through the Syk-mediated tyrosine 

phosphorylation of IκBα, leading to its nuclear trans-
location [55]. Lee et  al. showed that treatment with 
lysophosphatidylcholine (LPC) increases ROS produc-
tion, which activates NF-κB by triggering the phospho-
rylation of IκBα in S. typhimurium-infected cells [56].

Another possible target in ROS-mediated NF-κB acti-
vation is IKKβ. Storz et al. suggested that  H2O2 induces 
IKKβ activation and NF-κB transcription by activat-
ing protein kinase D (PKD) [57]. Song et  al. suggested 
that PM2.5 exposure induces the production of ROS 
and decreases the expression of miR-331, thus increas-
ing IKK-β expression and continuous NF-κB activation 

Fig. 5 The relationship between ROS and NF-κB signaling pathway (created with figdraw). ROS activate NF-κB through three pathways. Canonical 
pathway: NF-κB is isolated in the cytoplasm via binding to IκBα. An initiating signal activates the IKK complex and phosphorylating IκBα at two 
N-terminal serines. The phosphorylation causes the degradation of IκBα, resulting in the nuclear translocation and the activation of target genes. 
Noncanonical pathway: depends on IKKα and activates p52/RelB complexes by triggering the proteolysis of the p52/p100 precursor
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[58]. However, Chen et al. showed that in vitro ablation 
of IKKβ in fibroblasts results in continuous ROS accu-
mulation, which might indicate that basal IKKβ activity 
is one of the mechanisms necessary for antioxidants in 
the body [59].

In addition, NF-κB-inducing  kinase (NIK), the 
upstream kinase in the noncanonical NF-κB signal-
ing pathway, is activated by ROS via the suppression of 
phosphatases and oxidating cysteine residues. Li et  al. 
demonstrated that  H2O2 mediates NIK activation and 
the subsequent NIK-mediated phosphorylation of IKKα 
during the stimulation of NF-κB by IL-1β. However, it is 
worth noting that NIK is activated by a narrow range of 
 H2O2 concentrations (1–10 μm). In contrast, higher con-
centrations suppress NIK activity according to in  vitro 
reconstitution experiments [6, 60].

MAPK signaling pathways
The mitogen-activated protein kinase (MAPK) cas-
cades, including the extracellular signal-related kinase 
(ERK), p38 kinase (p38), and c-Jun N-terminal kinase 
(JNK) pathways, are evolutionarily conserved signaling 
pathways that mediate several cellular activities, such as 
inflammation and innate immunity [6]. The activation 
pathways of these three typical MAP kinases are approxi-
mately the same. MAPK signaling cascades are com-
posed of at least three hierarchically sequential kinase 
compositions: a mitogen-activated kinase kinase kinase 
(MAP3K), a mitogen-activated kinase (MAP2K), and 
a MAPK. MAP3Ks activate MAP2Ks by phosphoryla-
tion, and activated MAP2Ks phosphorylate and activate 
MAPKs. Ultimately, activated MAPKs phosphorylate 
multiple target proteins, mainly MAPK-activated protein 
kinases (MAPKAPKs), including ribosomal-S6-kinases 
(RSK1-4), mitogen- and stress-activated kinases (MSK1-
2), MAPK-interacting kinases (MNK1-2), and MAPKA-
PKs (MK) [61].

Together with NF-κB activation, MAPK activation 
mediates the expression of several genes that collectively 
regulate inflammation [62]. ERK1/2 activation exerts 
contradictory effects on inflammation, showing the abil-
ity to induce the production of TNF, IL-1β, and IL-10 
but inhibiting the production of some proinflammatory 
mediators, such as IL-12 and interferon-β (IFN-β). The 
JNK signaling pathway in macrophages promotes inflam-
matory responses, and this might be related to facilitat-
ing the expression of multiple M1 macrophage-specific 
genes [62]. P38 MAPK consists of four isoforms (α, β, γ, 
and δ), and p38α and p38β are predominantly involved 
in inflammatory diseases. Activated p38 phosphoryl-
ates histone H3 in the promoters of genes that encode 
proinflammatory mediators. The phosphorylation abil-
ity of p38 also promotes the proximity of NF-κB to its 

DNA-binding sites. Furthermore, MK2-mediated p38 
activation leads to the inactivation of tristetraprolin by 
phosphorylating its two critical serine residues (Ser52 
and Ser178), thus destabilizing several mRNAs that have 
anti-inflammatory properties. In general, p38 activation 
results in the increased production of proinflammatory 
mediators, including IL-1β, IL-8, and tumor necrosis 
factor-α (TNF-α). Interestingly, while p38α was initially 
proposed to have mainly proinflammatory properties, 
considerable evidence has shown that it also plays sig-
nificant cell type-specific roles in limiting inflammatory 
responses [63, 64]. These dual effects on inflammation 
might occur in a cell type-specific manner. In particular, 
MAPK-mediated inflammation leads to changes in the 
local inflammatory microenvironment, contributing to 
tumor invasion [62–64]. Activation of MAPKs induces 
the expression of multiple inflammatory genes that are 
related to various inflammatory diseases, such as asthma 
[9], TRAPS [37], and COPD [63].

Studies have shown that ROS induce the activation of 
MAPK pathways. Several cellular stimuli that cause ROS 
production have the ability to activate MAPK pathways 
in different cell types in parallel [64]. Bulua et al. showed 
that the ROS scavengers N-acetylcysteine (NAC) and 
DPI effectively reduce sustained JNK and p38 phospho-
rylation in TNFR1-heterozygous mutant MEFs and WT 
MEFs [37]. ROS are associated with the maintenance 
of MAPK activity and excessive generation of proin-
flammatory mediators, including IL-6, TNF, IL-8, and 
IL-10. However, the mechanisms by which ROS activate 
MAPK pathways remain unclear, principally because of 
a lack of information regarding the fundamental roles 
of ROS in activation [64]. MAP3Ks might function criti-
cally in redox signaling; among these kinases, ASK1 has 
been commonly identified as an ROS-responsive kinase. 
ROS oxidize Trx, a binding protein of ASK1, and its oxi-
dized form dissociates from ASK1. As a result, ASK1 is 
activated by the phosphorylation of a critical threonine 
residue in its kinase domain. To support this mecha-
nism, Hsieh et al. suggested that in AML12 hepatocytes, 
rotenone (ROT)-induced ROS dissociate the Trx-ASK1 
complex and consequently activate the p38 MAPK sign-
aling pathway [65]. Pan et  al. also demonstrated that 
scavenging ROS by NAC or CAT decreases ASK1 and 
p38 MAPK activation [66]. Furthermore, TNF recep-
tor-associated factor 2 (TRAF2) and TRAF6, which are 
needed to activate ASK1, are recruited to activated ASK1 
after ROS stimulation [64]. Regarding another MAP3K, 
Schroyer et  al. suggested that ROS stimulate the phos-
phorylation of mixed lineage kinase 3 (MLK3) at two 
serine residues, enhancing MLK3-dependent B-Raf and 
ERK1/2 activation [67]. Other possible targets of ROS 
in the activation of MAPK pathways are growth factor 



Page 11 of 34Liu et al. Journal of Hematology & Oncology          (2023) 16:116  

receptors, which activate the ERK pathway upstream. 
The accumulation of ROS induces ligand-independent 
activation of the EGF receptor (EGFR) and PDGF recep-
tor (PDGFR), subsequently activating the Raf/MEK/ERK 
signaling pathway [64]. Gonzaga et  al. demonstrated a 
similar process in which acute ethanol intake induces 
ROS production, PDGFR phosphorylation, and MAPK 
activation in sequence [68]. The effect of ROS on growth 
factor receptors might be dose-dependent. Weng et  al. 
showed that mild levels of ROS oxidize PTPs and/or spe-
cific Cys residues of EGFR to activate MAPK signaling 
pathways [69]. In contrast, higher levels of ROS hyper-
oxidate the Met residue of EGFRT790M and block down-
stream pathways. Furthermore, MAPK phosphatases 
(MKPs) dephosphorylate and inactivate MAPKs. Intra-
cellular accumulation of ROS inactivates MKPs through 
the oxidation of their catabolic cysteine residues. Oxida-
tion results in diminished clearance of MAPKs by MKPs, 
which promotes the sustained activation of the JNK and 
p38 pathways. However, this effect depends on the levels 
of ROS as well. When ROS are present at excessive lev-
els, they activate MKPs and inhibit MAPKs, significantly 
protecting against the cell death induced by toxic ROS 
levels [64, 70].

JAK/STAT signaling pathway
The evolutionarily conserved Janus kinase/signal trans-
ducer and activator of transcription (JAK/STAT) signal-
ing pathway is considered a central communication node 
in regulating inflammation. It consists of ligand‒recep-
tor complexes, namely, JAKs, and STATs. [71]. The JAK/
STAT signaling pathway is a direct mechanism by which 
extracellular factors regulate gene expression. Through 
transphosphorylation, JAK family members are auto-
activated in response to numerous cytokines, such as 
interleukins, interferons, and hormones. Activated JAKs 
phosphorylate intracellular receptors domains at specific 
tyrosine residues, which function as docking sites for 
STATs. Receptor-localized STATs are subsequently phos-
phorylated and activated to form dimers, which facilitate 
their disassociation from the receptors and translocation 
to the nucleus. In the nucleus, STATs bind to specific 
adjustment zones in DNA sequences to regulate the tran-
scription of target gene expression. In addition, phos-
phorylated JAK activates phosphatidylinositol 3-kinase 
(PI3K), which further activates the PI3K/AKT signaling 
pathway [71–73].

The JAK/STAT signaling pathway is involved in patho-
genetic processes of many inflammatory and autoim-
mune diseases, such as rheumatoid arthritis, psoriasis, 
and IBD. JAKs and STATs are extensively employed by 
various cytokines that are related to the pathogen-
esis of these diseases to transduce intracellular signals. 

Moreover, STATs are crucial for regulating the gene 
transcription of proinflammatory cytokines, which are 
integral to the development of inflammation. As a result, 
JAKs and STATs act as indispensable mediators in the 
development of inflammatory diseases by promoting 
the production of chemokines and managing the differ-
entiation and apoptosis of hematopoietic cells [74–77]. 
It should be noted that in regard to the relationship 
between STATs and inflammation, it must be consid-
ered that they can act as receptors for multiple cytokines. 
Therefore, it is likely that their biological activities are 
counterregulatory in the context of distinct cytokines. 
For instance, STAT3 can promote inflammation when 
activated by IL-6. In contrast, it can inhibit inflammation 
when activated by IL-10 [77].

While extracellular ligand stimulation directs STAT 
activation, ROS also modulate the phosphorylation of 
STAT tyrosine residues [78]. The activation of STAT by 
ROS may be mediated by DNA methylation [79]. Simon 
et  al. previously suggested that STATs, such as STAT1 
and STAT3, are activated in fibroblasts and A-431 carci-
noma cells after  H2O2 stimulation, and this activation can 
be suppressed by antioxidants [80]. Choi et  al. showed 
that pretreatment with the thiol antioxidants GSH and 
NAC reduces ROS levels and thus attenuates STAT3 acti-
vation and reduces inflammation levels in LPS-treated 
A549 cells [81]. Liu et  al. reported that respiratory syn-
cytial virus (RSV)-induced ROS production activates 
STATs, which occurs independently of tyrosine phos-
phatases [82]. In general, ROS promote inflammatory 
responses through the activation of STATs. However, 
overproduction of ROS and toxic ROS levels may form 
a redox-sensitive loop, in which ROS inactivate tyrosine 
phosphatases and further inactivate STAT phosphoryla-
tion [78].

The JAK/STAT signaling pathway is a complex path-
way, and the underlying mechanisms are still not well 
understood. This pathway can exert different effects in 
response to other ligand‒receptor complexes. In addi-
tion, the effect of STATs on ROS is also multifaceted, 
including positive and negative feedback [78]. There-
fore, ROS and the JAK/STAT pathway form a complex 
network relationship, which needs further research and 
exploration, especially to understand the underlying 
molecular mechanisms.

Nrf2 signaling pathway
Nuclear factor erythroid 2-related factor 2 (Nrf2) belongs 
to the cap ‘n’ collar (CNC) family of transcription fac-
tors, which activate the transcription of more than 500 
genes, including genes that encode antioxidant enzymes; 
thus, these transcription factors protect cells from ROS 
damage and enhance antioxidant activity. Nrf2 contains 
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605 amino acids and has seven Nrf2-ECH homologous 
domains (Neh1-7), each of which performs distinct func-
tions in regulating the stability or transcriptional activ-
ity of Nrf2. Among these domains, the Neh1 domain is 
crucial for the function of Nrf2. It forms heterodimer 
Neh2 domains with small Maf (sMaf) proteins to mediate 
binding to the cytoplasmic inhibitors of Nrf2 and Keap1 
[83]. The Neh2 domain contains a degradation domain 
and is involved in ubiquitin-dependent degradation [84]. 
In comparison, the concatenation of the Neh4 and Neh5 
domains contributes to the cotransactivation of Nrf2 
[85].

The relationship between Nrf2 and ROS is different 
from that of other pathways. Nrf2 regulates ROS when 
ROS homeostasis is disrupted, similar to negative feed-
back effects in organisms. The upstream mechanism 
that regulates Nrf2 activity is Kelch-like ECH-associated 
protein 1 (KEAP1). When stimulated by ROS, cysteine 
residues of KEAP1 are modified, resulting in the phos-
phorylation of Nrf2, which is translocated to the nucleus 
to form a heterodimer (Nrf2-MAF) with the Maf protein 
and the Jun bZip transcription factor. AU-rich elements 
(IS) in the nucleus can accurately recognize Nrf2-MAF 
and bind to Nrf2 through its Neh4 and Neh5 domains. 
Under the guidance of cAMP reaction element bind-
ing proteins and transcriptional activators, Nrf2 medi-
ates transcription and thus regulates the expression of 
genes. Furthermore, a range of antioxidants and phase II 
enzymes, including heme oxygenase-1 (HO-1), NADPH 
dehydrogenase, SOD, and CAT, are activated. In this 
way, harmful substances such as ROS are removed, and 
cells are protected from oxidative stress, inflammation, 
and apoptosis. In addition to Keap1, a variety of protein 
kinases, including MAPKs, protein kinase C (PKC), ino-
sitol PI3K and NF-κB, can also induce Nrf2 phosphoryla-
tion and participate in Nrf2 transcription [86]. The Nrf2/
HO-1 signaling pathway is one of the classical pathways 
that affects antioxidant enzymes. In addition, the Nrf2/
HO-1 signaling pathway significantly reduces the pro-
duction of mtROS and regulates the integrity of mito-
chondrial function.

In addition, inflammatory molecules can activate Nrf2 
endogenously. For example, 15-deoxyd-d-prostaglandin 
J2 (15d-PGJ2), one of the end products of the COX-2 
pathway, can interact with KEAP1 to activate Nrf2 and 
thus exert potent anti-inflammatory effects [87]. Notably, 
the depletion of Nrf2 in mice eliminates the effect of 15d-
PGJ2 on attenuating inflammation, suggesting that Nrf2 
is crucial for the anti-inflammatory effect of 15d-PGJ2 
[88–92].

Currently, some inflammatory diseases can be pre-
vented and/or treated by increasing the levels of Nrf2. 
In contrast, reducing or knocking out Nrf2 expression 

increases susceptibility to these diseases. Kong et  al. 
found that LPS-induced TLR and NF-κB signaling was 
increased in Nrf2-deficient model mice, resulting in 
increased expression of proinflammatory factors [93]. 
Furthermore, these authors found that Nrf2 deficiency 
enhances susceptibility to acute lung injury (ALI) in 
mice and reverses the attenuation of lung inflammation. 
In addition to pulmonary inflammation, other inflam-
matory diseases, including nephritis, OA, and IBD, are 
associated with Nrf2 deficiency [94–96]. Nrf2 pathway 
is a signaling pathway that is activated by disrupted ROS 
homeostasis to scavenge ROS and thus exert anti-inflam-
matory effects.

PI3K/AKT signaling pathway
PI3K and its target protein, protein kinase B (PKB), are 
essential cell signaling molecules. They play significant 
roles in cell apoptosis and proliferation by influencing the 
functions of many downstream molecules. PI3K mainly 
comprises a regulatory subunit (P85) and a catalytic sub-
unit (P110), which are activated by tyrosine kinase recep-
tors. When cell membrane receptors are stimulated by 
various extracellular factors, including cytokines, growth 
factors, and hormones, intracellular PI3K is activated. 
Subsequently, bioactive PI3K catalyzes the transition of 
phosphatidylinositol 4,5-diphosphate (PIP2) to phos-
phatidylinositol 3,4,5-triphosphate (PIP3) [97]. This reac-
tion leads to the recruitment and activation of proteins 
containing the pleckstrin homology (PH) domain, includ-
ing phosphoinositol-dependent protein kinase (PDK) and 
the serine/threonine protein kinase AKT (also known as 
PKB).

There are three closely related subtypes of AKT, and 
they play significant roles in regulating cell growth, 
multiplication, survival, and metabolism [98]. AKT is 
the crucial protein downstream of PI3K and consists of 
PH, catalytic, and regulatory domains. Loss or mutation 
of the PH domain may lead to a decrease and inactiva-
tion of AKT. Activation of PI3K leads to an interaction 
between PIP3 and AKT, which causes the translocation 
of AKT from the cytoplasm to the membrane. Moreover, 
the conformation of AKT changes, exposing its threo-
nine and serine protein. AKT is activated only when both 
residues are phosphorylated [99]. Then, activated AKT 
is transferred from the membrane back to the cytoplasm 
or nucleus. Activated AKT further targets downstream 
signaling molecules, including mTOR, Bad, caspase 9, 
cyclin D1, and NF-κB [100].

ROS can simultaneously activate PI3K to directly 
amplify its downstream signal and inactivate phosphatase 
and tensin homology (PTEN). PTEN negatively regu-
lates PIP3 synthesis via cysteine residues in the active 
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oxidizing center and consequently inhibits the activation 
of AKT [6]. In addition, ROS can facilitate the phospho-
rylation of PTEN through casein kinase II, which pro-
motes the entry of PTEN into the proteolytic degradation 
pathway.

The PI3K-AKT pathway is associated with inflamma-
tion. Studies have demonstrated that the activation of the 
PI3K/AKT signaling pathway can inhibit OA and chon-
drocyte apoptosis in rats. Inhibition of this pathway can 
result in the opposite effect [101]. Therefore, the PI3K-
AKT pathway exerts specific effects via anti-inflamma-
tory mechanisms. However, several studies have shown 
that this pathway can also promote inflammation. Many 
constituents of the PI3K pathway play positive roles in 
the expression of inflammatory cytokines, the recruit-
ment of inflammatory cells, and the function of immune 
cells [9]. In addition, ROS have been demonstrated to 
regulate the phosphorylation of AKT [66], which then 
induces inflammation in various cell types. As a signal-
ing pathway that plays a possible role in the pathogenesis 
of inflammation, the PI3K pathway is still expected to be 
a breakthrough in the treatment of inflammation. There-
fore, further studies on mechanisms related to PI3K/AKT 
signaling are needed.

ROS scavenging biomaterials in the treatment 
of inflammation
When ROS-mediated inflammatory diseases occur, the 
physiological ROS scavenging system cannot protect 
the body against effects of ROS overproduction. Hence, 
biomaterials with potent ROS scavenging abilities are 
considered promising therapeutic agents for inhibiting 
inflammation [102]. Recently, biomaterials with distinc-
tive ROS scavenging properties have been designed, and 
these biomaterials have potential activities to overcome 
the fundamental challenges of treatments that target 
ROS and inflammation in clinical settings [12]. Based 
on their diverse working mechanisms, ROS scavenging 
biomaterials are classified into three categories: enzy-
matic biomaterials that mimic enzymes or enhance the 
action of natural enzymes to accelerate ROS elimination 
through catalysis, biomaterials that directly react with 
ROS, and biomaterials that block ROS sources to reduce 
ROS production (Fig.  6). This classification provides 
insight into the anti-inflammatory therapeutic mecha-
nisms of ROS scavenging biomaterials, and it may guide 
further understanding, design, manufacture, and evalua-
tion of these materials. This section will summarize the 
working mechanisms of ROS scavenging biomaterials 
and the most recent advances in the use of these mate-
rials for treating ROS-mediated inflammatory diseases 
(Table 2).

Enzymatic biomaterials
Natural enzyme‑based biomaterials
Natural enzymes have promising applications in bio-
technology, biomedicine, and pharmacy. For instance, 
natural enzymes with broad-spectrum abilities have been 
proven to be efficient biotherapeutics in the treatment 
of various inflammatory diseases caused by dysregula-
tion of the ROS scavenging system [12]. Nevertheless, 
the effective delivery of these natural enzymes in treat-
ment is generally limited by their inherent low stability 
under working conditions, high sensitivity to fabrica-
tion and storage, and short half-lives [103]. To make the 
use of natural enzymes more efficient, a variety of natu-
ral enzyme-based biomaterials have been designed and 
fabricated.

For instance, Abdel-Mageed et  al. prepared a gelatin 
(Gel)–alginate (Alg) biocompatible hydrogel (Gel–Alg) 
using calcium chloride as an ionic cross-linker [103]. The 
Gel-Alg hydrogel could act as an immobilization support 
to improve CAT stability for practical applications. As 
a result, the integration of the natural antioxidant CAT 
into Gel–Alg holds promise as a novel anti-inflammatory 
wound dressing. Other studies have also pointed out that 
there are many ways to support CAT, such as glutaralde-
hyde cross-linked BSA hydrogels and methacrylate gela-
tin (GelMA) inverse opal scaffolds [104] or nanoporous 
gold (NPG) [105]. The biocomposites described above 
have enormous application potential, including in the 
inhibition of inflammation.

Biomaterials loaded with SOD have also been inten-
sively studied. Zhuang et al. modified γ-PGA with taurine 
(γ-PGAS) and prepared a SOD-loaded γ-PGAS/γ-PGA 
hydrogel (SOD-PGAS/PGA-H) through cross-linking. 
Compared with natural SOD, SOD-PGAS/PGA-H com-
bines the strengths of SOD and γ-PGAS/γ-PGA-H. It 
has a stronger capability to scavenge ROS and generates 
a moist microenvironment, promoting chronic wound 
healing [106]. Similarly, Dong et al. designed a new type 
of thermosensitive hydrogel, poly(N-isopropyl-acryla-
mide)/poly(gamma-glutamic acid) (PP), loaded with 
SOD, which showed the capability to inhibit or reduce 
ROS generation and improve the treatment of traumatic 
wounds [107].

Modulating natural enzyme biomaterials
At present, the modulation of therapeutic biomaterials is 
focused on regulating the effects of natural cells and bio-
logical macromolecules in the human body to accelerate 
targeted treatment with either the body’s own systems 
or natural products. Modulating natural enzyme bio-
materials strengthens the physiological enzymatic ROS 
defense system to clear ROS and reduce inflammation by 
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Fig. 6 Summary of ROS scavenging materials. Based on their diverse working mechanisms, ROS scavenging biomaterials are classified into three 
categories. Enzymatic biomaterials: enzymatic biomaterials that mimic enzymes or enhance the action of natural enzymes to accelerate ROS 
removal through catalysis; direct ROS scavenging biomaterials: biomaterials that react directly with ROS; ROS generation-blocking biomaterials: 
biomaterials that block ROS sources to reduce ROS production
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enhancing the physiological activity of natural ROS scav-
enging enzymes, including SOD, CAT, and GPx.

Nrf2 is an important target for modulating natural 
enzyme biomaterials by activating various antioxidant 
enzymes, including HO-1, NADPH dehydrogenase, 
SOD, and CAT. Zhang, D. et  al. prepared an inject-
able hydrogel that activates the Nrf2 signaling pathway 
by combining gallic acid grafted hyaluronic acid (HA) 
with HA-tyramine (HT) polymer via a dual-enzyme 
cross-linking method [108]. The hydrogel inhibits neu-
roinflammation, contributing to the repair of traumatic 
brain injury (TBI) by decreasing the levels of a variety of 
proinflammatory cytokines, including TNF-α and IL-6, 
and increasing the expression of the anti-inflammatory 
cytokine IL-4. Guided by numerous anti-inflammatory 
biomaterials that successfully activate Nrf2, Park  et al. 
showed that malonic acid (MA) isolated from Pinus 
densiflora promotes the antioxidant enzymes SOD1 and 
HO-1 through activation of Nrf2, resulting in a reduction 
in UVB-induced ROS levels [109]. Consequently, MA 
reduces the ROS-induced activation of NF-κB, MAPK, 
and proinflammatory cytokines (IL-6, COX-2, and TNF-
α). In addition, Qian, Z.J. et  al. demonstrated that two 
peptides from the seahorse (SHP-1 and SHP-2) activate 
Nrf2 and notably reduce intracellular ROS levels [110]. 
Although they are currently not applied in the treat-
ment of inflammatory diseases, MA isolated from Pinus 
densiflora and SHP-1 and SHP-2 isolated from seahorse 
hydrolysates are biomaterials with highly potential anti-
inflammatory functions.

Collagen is rich in glycine, alanine, and glutamic acid, 
but it contains low levels of tyrosine and phenylalanine. 
Collagen can potently improve the activities of SOD and 
GPx in cultured RAW264.7 cells, leading to ROS scav-
enging and protection against  H2O2-induced inflamma-
tion [111]. Aravinthan et al. showed that a collagen-based 
sponge is an effective material for dressing open wounds 
that can significantly decrease IL-6 and TNF-α produc-
tion and increase anti-inflammatory cytokine IL-10 
production in wound tissues [112]. In addition, wound 
tissues treated with the collagen-based sponge exhibit 
apparent reductions in inflammatory cells, suggest-
ing that this sponge is an emerging material for wound 
healing.

Furthermore, bioactive glasses (BG) containing stron-
tium are another type of biomaterial with modulated nat-
ural enzymes, and it can increase the activities of SOD, 
CAT, and GPx. BG-sr exerts a unique protective effect on 
ROS in the body, decreasing the inflammatory response 
induced by ROS and playing an important role in the 
repair and regeneration of wounds and bone [113, 114].

Nanozymes
With the rapid and notable development of nanotech-
nologies, it has been discovered that nanoparticles have 
an intrinsic ability to mimic the catalytic activity of some 
biological enzymes; these particles are called nanozymes 
[115]. Many nanozymes have been utilized because 
of their distinctive ROS scavenging abilities, and they 
exhibit the potential to overcome the core difficulties of 
anti-ROS therapy. Overall, nanozymes have numerous 
advantages, such as enhanced stability, multifunctional-
ity, and tunable activity. At present, various nanostruc-
tures that can catalytically eliminate ROS have already 
been developed [12, 116].

Ce‑contained nanozymes The biological applications 
of cerium oxide nanoparticles  (CeO2 NPs) in scavenging 
ROS have received extensive attention in recent decades. 
 CeO2 NPs are unique due to the convertible surface, which 
contain both trivalent cerium atoms  (Ce3+) and tetrava-
lent cerium atoms  (Ce4+).  Ce3+ on the surface serves as 
an analog of SOD, which transforms superoxide radicals 
into oxygen and  H2O2. In comparison,  Ce4+ produced by 
the abovementioned reactions scavenges  H2O2 and gener-
ates oxygen and water, ultimately eliminating ROS.  Ce4+ 
is converted into the original  Ce3+ via the absorption of 
hydrogen electrons. In general, the recyclable changes 
between  Ce3+ and  Ce4+ allow  CeO2 NPs to be used as 
SOD and CAT mimetics (Fig. 7). Therefore, they are logi-
cal therapeutic agents for treating ROS-induced inflam-
matory diseases [117].

Yu et  al. demonstrated that  CeO2 NPs scavenge mul-
tiple ROS and inhibit the MAPK and NF-κB signaling 
pathways to decrease proinflammatory mediators [118]. 
In particular,  CeO2 NPs can markedly suppress inflam-
mation in rat periodontitis models. Niemiec et al. found 
that  CeO2 NPs conjugated to microRNA-146a (CNP-
mir146a) and delivered through the trachea increase 
pulmonary levels of miR146a without causing systemic 
increases [119]. This indicates that CNP-miR146a shows 
potential in preventing ALI. The NF-κB signaling path-
way and the inflammatory pathways it activates have 
been shown to be key mediators in the pathogenesis of 
ALI and acute respiratory distress syndrome (ARDS). 
CNP-miR146a inhibits the NF-κB signaling pathway 
and prevents ALI by altering leukocyte recruitment and 
reducing inflammation and oxidative stress. In addition 
to ALI, CNP-miR146a can improve diabetic wound heal-
ing. Dewberry et al. demonstrated that  CeO2 NPs act as 
free radical scavengers, while miR146a inhibits the proin-
flammatory NF-κB pathway and synergistically regulates 
oxidative stress and inflammation [120] (Fig. 8).
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Fig. 7 Mechanism of ROS removal by  CeO2 NPs (created with figdraw).  Ce3+ on the surface transforms superoxide radicals into oxygen and  H2O2, 
while  Ce4+ scavenges  H2O2 and generates oxygen and water, ultimately eliminating ROS. Due to the absorption of hydrogen electrons,  Ce4+ 
is converted into the original  Ce3+. The recyclable changes allow  CeO2 NPs could be used as SOD mimetics and CAT mimetics as a logical 
therapeutic agents in treating ROS-induced inflammatory diseases

Fig. 8 Mechanism of ROS generation-blocking materials (created with figdraw). A NOX-inhibited materials. B LOX-inhibited materials. C 
XO-inhibited materials. D ETC-regulated biomaterials
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Huang et al. prepared chitosan-coated  CeO2 nanocubes 
(CCNs) through a hydrothermal method. These authors 
demonstrated that CCN application results in notable 
wound healing due to their anti-inflammatory effects, 
which decrease TNF-α and increase IL-10 [121]. CCNs 
have shown great potential in treating refractory wounds 
caused by persistent inflammation in oxidative stress-
related diseases, including diabetes. Injection of  CeO2 
NPs has also been confirmed to reduce inflammation 
in the corresponding target sites; thus, these NPs have 
promising prospects in the treatment of age-related mac-
ular degeneration (AMD) [122] and spinal cord injury 
(SCI) [123].

In addition, Ribeiro and Peloi et al. demonstrated that 
 CeO2 NPs can protect L929 fibroblasts from ultraviolet-
A radiation (UV-A)- and ultraviolet-B radiation (UVB)-
induced damage [124, 125]. Exposure to ultraviolet 
radiation is a major cause of premature skin aging and 
cancer, which is mainly caused by the overproduction of 
ROS.  CeO2 NPs reestablish oxidation balance by ame-
liorating ROS levels and enhancing antioxidant enzyme 
activity, thereby preventing UV-mediated oxidative dam-
age to L929 cells. The team also demonstrated that  CeO2 
NPs mitigate the effects of neutrophil oxidation reactions 
by reducing cell damage, suggesting that  CeO2 NPs can 
potentially be used as radioprotective/therapeutic agents 
for UV damage [126].

In addition to  CeO2 NPs, ceria-zirconia nanoparticles 
(CZ NPs) act as antioxidants and have shown significant 
performance in the treatment of inflammatory condi-
tions. Soh et al. synthesized 2 nm CZ NPs with a higher 
Ce/Ce ratio and faster conversion rate [127]. The result-
ing CZ NPs have significantly improve ROS scavenging 
performance and thus regulate inflammatory cells at very 
low doses. Furthermore, CZ NPs have been shown to be 
effective in reducing mortality and systemic inflamma-
tion in two representative sepsis models. These findings 
suggest that CZ NPs have potential as therapeutic nano-
medicines for the treatment of ROS-related inflamma-
tory diseases.

Manganese‑contained (Mn‑contained) nanozymes Mn-
contained nanozymes have shown extensive research 
prospects due to their excellent performance [128]. 
Mn-contained nanozymes mainly include MnO,  MnO2, 
 Mn2O3,  Mn3O4, and other manganese oxide nanozymes, 
which have become a current focus of research [129]. 
In general, Mn-contained nanozymes exhibit SOD- and 
CAT-mimetic activities, possibly due to their different 
oxidation states [116]. Nevertheless, in acidic inflamma-
tory microenvironments, frequently used Mn-contained 
nanozymes tend to release large amounts of  Mn2+, which 
can cause Fenton-like reactions and damage cells or tis-

sues. Xiong et  al. designed a new type of manganese-
loaded mesoporous silica nanozyme (MnMSN) with 
 KMnO4 oxidation surfactant templates [129]. Due to the 
presence of  Mn2+ and  Mn4+, MnMSNs can catalytically 
scavenge  H2O2, ·OH, and ·O2

–. MnMSNs suppress NF-κB 
activation by scavenging excessive ROS from inflamma-
tory cells (M1 macrophages) and decrease proinflamma-
tory mediator (TNF-α and IL-1β) production. In addi-
tion, Yao et al. prepared  Mn3O4 nanoparticles (NPs) via 
a hydrothermal method, and these NPs prominently 
scavenge  H2O2, ·OH, and ·O2

– better than  CeO2 NPs and 
efficiently inhibit ROS-mediated ear inflammation in live 
mice [116]. Similarly, Ai et al. prepared multishelled man-
ganese dioxide-encapsulated selenium–melanin (Se@
Me@MnO2) nanocomposites through simple radical 
polymerization and the in situ oxidation‒reduction reac-
tion method [130]. The Se@Me@MnO2 nanocomposites 
also function as powerful mimetics of multiple enzymes, 
including CAT, SOD, and GPx, to scavenge ROS in vitro, 
reducing ear inflammation in Kunming mice.

Hu et  al. developed an adhesive hydrogel  by combin-
ing polyvinyl alcohol (PVA), 3,4-dihydroxy-d-phenylala-
nine (DOPA) and MnO nanoparticles (NPs), named the 
PDMO hydrogel [131]. In addition to scavenging ROS 
and alleviating hypoxia in inflammatory microenviron-
ments, the hydrogel exerts excellent antibacterial and 
antibiofilm effects. The PDMO hydrogel demonstrates 
significant therapeutic efficacy in alleviating gingivitis 
and periodontitis in Sprague‒Dawley rats, and its effects 
are even comparable to or better than those of PERIO, 
which is commercially available. The biosafety of the 
PDMO hydrogel was comprehensively investigated, and 
it was proven that the hydrogel has good biocompatibil-
ity, indicating that the PDMO hydrogel has great poten-
tial for future clinical translation.

Copper (Cu)‑contained nanozymes Copper, a necessary 
trace element in humans, plays a crucial role in the func-
tions of many enzymes, including tyrosinase and SOD1. 
As a result, it is rational that Cu-contained nanozymes 
can scavenge ROS. Liu, T. et  al. developed ultrasmall 
 Cu5.4O NPs  (Cu5.4O USNPs) with ROS scavenging ability 
due to their inherent ability to mimic multiple enzymes, 
such as CAT, GPx, and SOD [132].  Cu5.4O USNPs can 
be applied to treat diverse ROS-induced inflammatory 
conditions, including acute kidney injury (AKI), ALI, 
and wound healing both in vitro and in vivo. Peng et al. 
prepared  Cu5.4O@Hep-PEG hydrogels with improved 
performance by adding star-shaped polyethylene glycol 
and heparin into  Cu5.4O USNPs [133].  Cu5.4O@Hep-PEG 
hydrogels exhibit properties similar to CAT, GPx, and 
SOD scavenging ROS, preventing further inflammation-
activation signaling.
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In addition, Pt-contained nanozymes [134–136], Prus-
sian blue-contained nanozymes [137–139] and carbon 
dot nanozymes [140, 141] have all been experimentally 
demonstrated to mimic enzymes that scavenge ROS. 
They are also promising biomaterials for the treatment of 
inflammatory diseases by targeting ROS.

Artificial selenoenzymes
GPx is a  selenoenzyme  that protects cells from ROS-
induced damage. Artificial selenoenzymes with GPx 
activity have been prepared and applied to catalyze the 
reduction of hydroperoxides and reestablish physiologi-
cal ROS homeostasis during treatment. Based on their 
structure, these artificial selenoenzymes are divided into 
two categories: selenoenzymes with direct Se-N–Se-O 
bonds and selenoenzymes with intramolecular noncova-
lent Se···N–Se···O bonds [142].

Diphenyl diselenide [(PhSe)2], an organoselenium com-
pound with GPx-mimetic activity, exhibits anti-ROS 
and anti-inflammatory properties and has been broadly 
investigated in recent decades [143, 144]. (PhSe)2 has 
been proven to suppress histological inflammatory mark-
ers and ROS levels, thus inhibiting the NLRP3 inflam-
masome pathway and the IκB/NF-κB pathway [143, 
144]. Several experiments have suggested that (PhSe)2 is 
a potential treatment for chronic infection in the brain 
caused by Toxoplasma gondii [143], ischemia/reperfu-
sion insult [145] and amyotrophic lateral sclerosis (ALS) 
[144].

Ebselen [2-phenyl-1,2-benzisoselenazol-3(2H)-one] 
is another artificial selenoenzyme with GPx-mimetic 
activity. Xu et al. suggested that ebselen may inhibit the 
ROS generation induced by H. pylori LPS and alter the 
generation of IL-8 by decreasing the phosphorylation 
of p38 MAPK [146]. Consequently, ebselen has shown 
strong potential for treating H. pylori infection. Chen, D. 
et  al. demonstrated that ebselen can alleviate the influ-
enza A virus-induced production of ROS and subsequent 
inflammatory responses [147]. Tewari et  al. suggested 
that ebselen also decreases the excessive ROS production 
of TNFα-treated glioma cells [148]. This downregula-
tion can reduce the production of the proinflammatory 
factors IL-6, IL-8, monocyte chemoattractant protein 1 
(MCP-1), and COX-2 to prevent the establishment of a 
deleterious proinflammatory tumor microenvironment.

Guided by the successful design of ebselen, many ebse-
len derivatives, cyclic selenate esters, spirodioxyselenu-
ranes, and various organotellurium compounds have 
been broadly reported [149]. However, the application 
of these biomaterials in clinical treatment still needs fur-
ther research and improvement because of the significant 
toxic effects that are caused by these biomaterials [150].

Although the catalytic efficiency of natural antioxidant 
enzymes is better than that of nanozymes, their poor 
stability, high cost, and catalytic activity that is sensitive 
to environmental conditions have always limited their 
clinical application. As a new artificial enzyme with great 
potential, nanozymes combine the function of natural 
enzymes with the characteristics of nanomaterials and 
have the advantages of better cost, stability, and feasi-
bility. These materials are currently considered to have 
potential for clinical therapeutic application in the future, 
but the problem of poor substrate selectivity still needs to 
be solved.

Direct ROS scavenging biomaterials
Polyphenols
Polyphenols, as the name suggests, have multiple phe-
nol rings. Polyphenols have been broadly utilized as 
exogenous ROS scavenging biomaterials and studied for 
possible use in the treatment or prevention of several 
ROS-related inflammatory diseases. Previous studies 
have shown that polyphenols can sacrificially react with 
free radicals and nonradicals. However, an increasing 
number of studies have revealed that the ROS scavenging 
effects of polyphenols occur due to their ability to react 
with free radicals, chelate metal catalysts, activate anti-
oxidant enzymes, and inhibit oxidases.

C u r c u m i n  C u r c u m i n [ 1 , 7 - b i s ( 4 - h y d r o x y -
3-methoxyphenyl)-1,6-heptadiene-3,5-dione] can scav-
enge free radicals, including RNS and ROS. The free 
radical scavenging process relies on donation of a H-atom 
[151], which can be initiated by the phenolic OH group or 
the  CH2 group of the b-diketone moiety. Free radicals per-
form electron transfer or extract H-atoms from these sites 
under normal conditions. Additionally, some specific bio-
chemistry methods can inhibit the reaction, for instance, 
the addition of a phenolic OH group [152].

Researchers have developed various biomateri-
als based on curcumin to take advantage of its antioxi-
dant and anti-inflammatory properties. First, curcumin 
has been employed to treat inflammatory diseases in 
the central nervous system. For instance, curcumin can 
improve neurological function in experimental rats with 
early brain injury after subarachnoid hemorrhage [153]. 
To overcome the limitations of curcumin’s low aque-
ous solubility and oral bioavailability, other studies have 
recently considered curcumin-loaded PLGA nanoparti-
cles (Nps-Cur) and curcumin-loaded liposomes. Both of 
these approaches proved to be promising strategies for 
promoting neuroprotection against oxidative damage in 
AD [154, 155]. In addition, Qian, F. et al. applied hydro-
gel-embedded curcumin (TM/PC), which significantly 
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reduces ROS levels and improves nerve regeneration and 
recovery after TBI [156]. Second, curcumin has excel-
lent potential in wound healing. Chen et  al. developed 
a curcumin-loaded sandwich-like nanofibrous mem-
brane (CSNM) that exhibits strong antioxidant activity 
in DPPH radical scavenging tests [157]. Hu et al. synthe-
sized a new type of hydrogel based on curcumin (OHA-
CMC/CNP/EGF) [158]. They found that this hydrogel 
can decrease inflammation by releasing curcumin in 
the early stage of wound healing in a model of diabetic 
full-thickness skin wounds. Zhang, X. et  al. described a 
glycosaminoglycan-based hydrogel delivery system that 
encapsulates curcumin [159]. This system exhibits strong 
ROS scavenging and anti-inflammatory properties and 
thereby accelerates chronic wound healing by regulating 
the wound microenvironment. Third, increasing atten-
tion has been given to the protective role of curcumin 
in ischemia‒reperfusion injury in animal models and 
various organs [160]. In addition, curcumin has shown 
promise in the treatment of many other ROS-induced 
inflammatory diseases, including AKI [161], ALI [162], 
and ankle inflammation [151].

Polydopamine (PDA) PDA is an artificially synthe-
sized form of melanin that has robust antioxidant activ-
ity. The ROS scavenging mechanism of PDA is not well 
understood due to its complicated structure, but the 
mechanism might be related to the molecular structure’s 
redox activity, inner radical lifetime, and superfast energy 
transfer via ion binding [163]. The catechol groups on 
PDA can quench free radicals and decrease the levels of 
certain compounds by providing H-atoms to the phe-
nolic hydroxyl group. Then, a stable quinone structure 
is formed via the interaction between the resulting phe-
noxyl radicals and the second quenching free radicals. 
PDA has a mid-physiological range of redox potential, 
and its redox function can be repeated. The redox activity 
of PDA makes it possible to accept electrons from ascor-
bic acid and to donate electrons to ROS. In addition to 
the catechol groups, semiquinone radicals and oxidized 
o-quinones can also be involved in redox reactions [164]. 
Other studies have suggested that the key to the antioxi-
dant activity of PDA is the rapid reduction of the o-qui-
none moiety in PDA to catechol by  H2O2 radicals (HOO·) 
through a mechanism involving the transfer of H-atoms 
[165]. Moreover, the scavenging of ROS by PDA may also 
be associated with its strong ability to chelate metal ions 
and its SOD-like activity, which are related to the stable 
free radicals that “reside” within melanin [165–167].

As an excellent spectral ROS scavenger, PDA has been 
widely used to treat ROS-related inflammatory diseases. 
Bao et al. used PDA NPs in periodontal disease and found 
them to be effective in eliminating ROS and decreasing 

periodontal inflammation as potent antioxidants without 
causing side effects [168]. Fu et al. utilized reduced PDA 
loaded in hydrogel dressings to enhance its antioxidant 
activity to accelerate wound healing [169]. Battaglini et al. 
applied lipid-coated PDA NPs (L-PDNPs) to treat neuro-
logical diseases and observed both antioxidant and pho-
tothermal effects [170]. The results demonstrated that 
L-PDNPs effectively blocks ROS-induced mitochondrial 
dysfunction and accelerates the recovery of neurites. 
Zheng et  al. developed PDA-wrapped manganese fer-
rite NPs (PDA@MF NPs) for the treatment of AKI [166]. 
The MF NPs constantly generate  O2 in an  H2O2-based 
hypoxic environment, which can polarize macrophages 
toward the M2 phenotype. PDA NPs function as ROS 
scavengers during  O2 generation, contributing to reduced 
renal inflammation. Yan et al. constructed LS@PDA NPs 
with high anti-inflammatory and antioxidant activities, 
which can efficiently scavenge ROS and decrease the lev-
els of proinflammatory cytokines, thus alleviating colonic 
inflammation in the treatment of IBD [171].

Tannic acid (TA) TA is another type of plant-derived 
polyphenol with anti-inflammatory, anti-ROS, and anti-
microbial properties [172]. Its large catechol groups make 
TA an innate free radical scavenger. The pyrogallol struc-
ture can be oxidized to form a quinone structure, which 
supplies hydrogen for TA and therefore resists oxida-
tion. In addition to being rich in catechol and pyrogallol 
groups, TA can chelate diverse metal ions through coordi-
nation bonds and rapidly form a steady five-element ring 
complex with these ions.

Increasing numbers of studies have shown that TA 
and TA-based biomaterials have great potential in the 
treatment of different inflammatory and related dis-
eases that are associated with ROS overproduction. Ni 
et al. obtained a TA-conjugated NP hydrogel (PPBA-TA-
PVA) that can effectively function as an ROS scaveng-
ing agent and reduce inflammation through decreased 
proinflammatory mediator (IL-6and IL-1β) production 
and increased gene expression (TGF-β1, COL-1, COL-3) 
[173]. Li, Y. et al. constructed TA-chelated Fe-decorated 
molybdenum disulfide nanosheets (MoS@TA/Fe NSs) 
that were fixed to multifunctional hydrogels [174]. Ben-
efitting from the TA/Fe complex, the hydrogels decom-
pose HO into O in a neutral environment to cope with 
hypoxia by supplying appropriate oxygen. Addition-
ally, this agent showed a strong ability to scavenge ROS 
and RNS and decrease the production of inflammatory 
mediators to maintain antioxidant system homeostasis 
and prevent inflammation. Shi et al. constructed a mul-
tifunctional HA–PBA–TA dynamic hydrogel, which was 
proven to have good ROS scavenging properties [175]. 
By introducing TA into the quaternized chitosan (QCS) 
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matrix, Pan et al. generated a new type of hydrogel fea-
turing strong ROS scavenging and antibacterial prop-
erties [176]. The novel biomaterials described above 
provide promising strategies for promoting wound heal-
ing in future clinical practice. Recently, TA-based bio-
logical materials have been increasingly studied in the 
context of IBD [177, 178], liver injury prevention [179], 
ischemic stroke [180], cognitive impairment [181], anti-
UV skin protection [182], bone renovation and regenera-
tion [183–185] and OA [186].

Hydrogen‑based materials
Hydrogen  (H2) has attracted extensive attention as an 
effective ROS scavenging biomaterial. In fact,  H2 can 
selectively reduce highly cytotoxic ROS concentra-
tions in diseased cells while preserving the physiological 
functions of ROS in normal cells. Furthermore,  H2 can 
quickly diffuse into target cells and tissues to perform its 
therapeutic functions since it is smaller than other anti-
oxidants. It can also pass through the blood‒brain barrier 
(BBB), while most ROS scavenging biomaterials cannot. 
Because of its unique property of scavenging ROS with-
out causing side effects,  H2 is a promising strategy for 
treating ROS-induced inflammation [187, 188].

Currently, many mechanisms of the antioxidant effect 
of  H2 have been proposed, the most important of which 
is the direct mechanism. That is,  H2 chemically reacts 
with ROS, including ·OH. The direct mechanism of 
·OH scavenging is achieved by the chemical reaction 
of  H2 + ·OH →  H2O + H· followed by H· +  O2

−   →  HO2
− 

[189]. However, this interpretation remains partially 
flawed from the atomic perspective [187]. The direct 
chemical reaction of  H2 with ROS has only been demon-
strated in acellular experiments [189]. Mild  H2 levels can 
scavenge a variety of ROS in vivo, suggesting that either 
 H2 is cleaved into H-atoms by intracorporal enzymes 
with strong activity or the chemical structure of  H2 is 
altered by external effects that break the bond between 
H-atoms. Kim et  al. demonstrated that protoheme, 
including the transition metal Fe, might mediate this pro-
cess, effectively reducing the activation barrier of hydro-
gen molecules [187]. In addition,  H2 can also significantly 
scavenge ROS by activating the Nrf2 pathway, promoting 
the expression of antioxidants and downregulating the 
level of NOX-2 [187, 189, 190].

During inflammation,  H2 decreases the infiltration of 
neutrophils and M1 macrophages and reduces the release 
of proinflammatory mediators, including IL-1β, IL-6, 
IL-8, IL-10, TNF-α and interferon-γ [190]. Specifically, 
in an airway disease model,  H2 recovered  H2O2-induced 
and LPS-induced ROS generation and suppressed 
MAPK activation in A549 and NCI-H292 cells in  vitro 
[191]. Similarly, in a periodontitis model,  H2 treatment 

decreased IL-1α and IL-6, important cytokines related to 
inflammation in periodontal tissues [192]. In addition,  H2 
has shown good therapeutic potential in ROS-induced 
inflammatory diseases such as ALI [193], COVID-19 
[194], psoriasis-associated skin lesions, and arthritis 
[195].

To maximize the anti-inflammatory effects of  H2, Wan 
et  al. developed a multicomponent nanoreactor (NR) 
that comprises chlorophyll a, l-ascorbic acid, and gold 
nanoparticles that can generate  H2 in  situ upon pho-
ton absorption, such as photosynthesis, in plants [196]. 
Their results confirmed that the novel system can reduce 
excessive levels of ROS and proinflammatory media-
tors and successfully ameliorate foot inflammation in 
mice. Recently, the team has prepared a similar system 
for photocatalytic  H2 production, adding the capability 
of simultaneous imaging to the initial anti-inflammatory 
treatment [197].

Sulfur‑based oxidation‑responsive biomaterials
Sulfur is a vital element with excellent biocompatibility in 
biological systems [198]. Sulfur compounds are currently 
considered important tools in the treatment and preven-
tion of inflammatory diseases because of their ROS scav-
enging properties.

Sulfur mainly participates in ROS scavenging through 
the Trx system, which is characterized by the conserved 
amino acid sequence Trp-Cys-Gly-Pro-Cys. In this 
sequence, Cys32 and Cys35 are redox-active and are 
apt to be oxidized by ROS. The oxidized Trx, in which 
disulfide bonds are formed between two thiol moie-
ties, can receive electrons from NADPH, thereby being 
reduced to reactive Trx with the assistance of TrxR. 
According to this reaction, Trx undergoes a cyclic redox 
reaction to ensure the persistence of its ROS scavenging 
abilities [199, 200].

Thioether/sulfoxide‑contained biomaterials Thioethers 
are a class of sulfur-contained compounds featuring an 
R–S–R′ moiety, in which R and R′ represent alkyl or 
aryl groups [201]. These compounds are readily oxidized 
into sulfoxide or sulfone by relatively high concentra-
tions of ROS [202]. Therefore, polythioether/polysulfide 
can directly function according to an anti-inflammatory 
principle. Immediate clearance of ROS has been shown 
to inhibit inflammatory pathways in mice hours after 
ischemic stroke and significantly reduce systemic admin-
istration (as well as brain damage due to accumulation 
of drugs in the brain due to BBB damage) [203]. In addi-
tion, a similar anti-inflammatory effect was observed in 
mice with TBI after the injection of thioether cross-linked 
polysorbate nanoparticles [204]. Similarly, poly(propyl 



Page 23 of 34Liu et al. Journal of Hematology & Oncology          (2023) 16:116  

thipropane) particles reduce inflammatory tissue damage 
in diabetic mice with ischemic limb injury and mechani-
cal cartilage injury after local injection [205]. Absorb-
able thioether-grafted HA nanofibrous hydrogels reduce 
wound inflammation and facilitate wound healing in dia-
betic models compared to unmodified HA [206].

Thioethers are hydrophobic structures, while sulfox-
ide and sulfone have more vital polarity; thus, thioethers 
undergo a change from hydrophobicity to hydrophilic-
ity when oxidized, which leads to an obvious increase in 
their solubility in the aqueous environment [202]. There-
fore, polythioether/polysulfide can be used as a carrier 
material to achieve good ROS responsiveness, and the 
addition of anti-inflammatory drugs can exert a syner-
gistic effect between ROS clearance and pharmacological 
drug activity.

When thioethers are oxidized to sulfoxide, in which 
the sulfur atom has a lone electron pair, some sulfoxides, 
including dimethyl sulfoxide (DMSO), can continue to 
be oxidized to sulfone by ROS [198, 201]. DMSO can be 
used as a drug, for example, in treating interstitial cystitis 
[207]. In fact, DMSO shows significant anti-inflamma-
tory properties and inhibits lymphocyte activation as well 
as M1 or M2 macrophage polarization [208]. In addition, 
it can resolve rheumatoid arthritis in mice at concentra-
tions of less than 10 vol% (70 vol% local administration). 
These properties are believed to be due to DMSO’s ROS 
scavenging ability, which may be secondary to the redox 
reaction of thioethers [209]. Another small molecule, 
sulfoxalicin (s-allyl-l-cysteine sulfoxide, found in garlic), 
is also shown to have antioxidant and anti-inflammatory 
properties.

Thioacetals/thioketals‑contained biomaterials Thioac-
etals/thioketals are also ROS scavenging materials con-
taining sulfur, and their activity is derived from the con-
densation reaction of mercaptans with aldehydes/ketones. 
They can be oxidized and cleaved by ROS while remaining 
relatively stable in acidic and alkaline environments [202].

Dual pH- and ROS-responsive nanomaterials have 
been constructed from the conanocrystalline precipita-
tion of hydrophobically modified chitosan, polythiok-
etone, and curcumin. The nanomaterials successfully 
inhibit the proinflammatory pathway by scavenging ROS 
(thioketone and curcumin) in ankle inflammation [151]. 
Due to the properties of polythioneone, it can also be 
applied in ROS-degradable implants. For instance, poly-
thioneone diol reacts with triisocyanate to form poly-
thioneone polyurethane scaffolds, which are degraded by 
ROS. Currently, these agents have been used in ischemic 
wound healing, and composite materials containing these 
materials and hydroxyapatite have been used to repair 
bone defects.

Hydrogen sulfide Hydrogen sulfide  (H2S) is a toxic and 
corrosive gas with the characteristic odor of rotting eggs. 
 H2S has a structure similar to a water molecule and is 
readily oxidized into a variety of forms, including elemen-
tal sulfur, sulfate  (SO4

2–), thiosulfate  (S2O3
–), and sulfur 

dioxide  (SO2) [210].
H2S can remove ROS and RNS more easily and quickly 

than traditional scavengers [211]. Although the activity of 
 H2S as a physiological antioxidant has been questioned, 
exogenous  H2S has shown excellent protective abili-
ties when cells are exposed to ROS. In addition,  H2S can 
freely diffuse across cell membranes due to its low molec-
ular weight [212].

H2S, acting as an antioxidant, shows therapeutic poten-
tial in several inflammatory diseases by eliminating the 
ROS that is generated during pathological processes. 
 H2S may play a significant role in treating cardiovascular 
diseases, neurodegenerative diseases, and other inflam-
matory diseases.  H2S can potentially protect cardiac tis-
sues against cardiovascular diseases, possibly by reducing 
oxidative stress and maintaining cell apoptosis of the 
endothelial cells. Endothelial cells are found inside blood 
and lymphatic vessels, and their disorder is thought to 
be associated with a range of cardiovascular diseases, 
such as atherosclerosis and hypertension [210]; inflam-
matory responses are the main pathological processes 
of these diseases.  H2S was first identified as a neuro-
modulator before its other functional roles were identi-
fied. Evidence of congenital inflammatory responses in 
AD was suggested 20 years ago. Subsequent studies have 
also revealed a role of inflammation in Parkinson’s dis-
ease (PD), ALS, multiple sclerosis (MS), and an increas-
ing number of other central nervous system diseases 
[213]. Treatment with  H2S has been proven to decrease 
the level of ROS and cognitive impairment in APP/PS1 
mouse models of AD, thus effectively treating AD.

Bilirubin‑derived biomaterials
Bilirubin, an endogenous antioxidant, is mainly pro-
duced by the breakdown of heme. As a kind of tetrapyr-
role, the antioxidative effect of bilirubin is closely related 
to its structure. Specifically, a fully exposed hydrogen 
atom attached to the C-10 bridge can combine with 
the outermost lone pair electron of oxygen radicals and 
thus directly scavenge ROS [214]. In addition, the bili-
rubin–biliverdin cycle further promotes the antioxidant 
activity of bilirubin [215]. Moreover, bilirubin triggers 
the intranuclear translocation of Nrf2 and enhances the 
expression of HO-1 and antioxidants, regenerating bili-
rubin and activating various antioxidant enzymes, and 
thus reducing ROS levels through intranuclear regulation 
[216, 217].
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By modifying bilirubin or loading bilirubin in nanocar-
riers, multiple bilirubin-derived nanoparticles (BRNPs) 
have been constructed to achieve high water solubility, 
favorable stability and advanced efficacy. To date, BRNPs 
have been proven to have promising prospects for appli-
cation in various disease models. Kim, Dong Eon et  al. 
established a mouse model of asthma and proved that 
BRNPs can inhibit Th2-mediated lung inflammation par-
tially by scavenging ROS in CD4 + T cells [218]. Yao, Q. 
et al. constructed bilirubin-encapsulated silk fibrin nano-
particles (BRSNPs) for the treatment of acute pancreatitis 
and found that both bilirubin and BRSNP can markedly 
ameliorate ROS concentrations, and BRSNP performed 
better in scavenging ROS [219]. In osteoarthritis, Xue, 
Song et al. indicated that BRNPs prevent cartilage degen-
eration by scavenging ROS, promoting autophagy and 
inhibiting the NF-κB pathway in an anterior cruciate liga-
ment transection rat model [220]. Studies that focused 
on ulcerative colitis have adopted various BRNPs, includ-
ing hyaluronic acid–bilirubin nanoparticles (HABNs) 
[221], PEGylated bilirubin micelles [222], and bilirubin 
self-assembled nanomedicine (BSNM) [223], all of which 
have demonstrated good ROS responsiveness and scav-
enging activity. Studies have also shown that BRNPs 
can be powerful ROS scavengers to manage cardiac and 
hepatic ischemia–reperfusion injuries [224, 225]. Choi, 
Chong Won et  al. have shown that BRNPs principally 
accumulate in the inflamed site where they reduce ROS 
levels and thus contribute to therapeutic effects in an LL-
37-induced rosacea-like mouse model. Several studies 
have also focused on psoriasis, another chronic inflam-
matory skin disease, and found that BRNPs induce a 
concentration-dependent reduction in both intracellular 
and extracellular ROS levels [226, 227]. Pulmonary fibro-
sis has attracted increasing attention in recent years as a 
sequela of severe coronavirus pneumonia. To address this 
conditions, Keum, Hyeongseop et  al. applied PEGylated 
bilirubin micelles to a mouse model, which were proven 
to preferentially assemble in inflamed lesions, reduc-
ing oxidative stress and markedly attenuating symptoms 
[228].

In summary, the ROS scavenging biomaterials that 
exert direct effects that we discussed above exhibit out-
standing antioxidant, anti-inflammatory, and ROS scav-
enging capacities. Their favorable biocompatibilities also 
contribute to their practical applications; of these mate-
rials, endogenous bilirubin-based biomaterials might 
perform better than other exogenous agents. For their 
distribution in  vivo, biomaterials, including  H2, BRNPs, 
etc., are more likely to aggregate in target tissues in differ-
ent ways, and studies are focusing on modifying biomate-
rials to facilitate their more precise transport to inflamed 
lesions. Further studies are needed to concentrate on 

how to generate updated biomaterials that possess maxi-
mized anti-inflammatory ability while also having excel-
lent stability, solubility, biocompatibility, site specificity, 
and low production cost.

ROS generation‑blocking biomaterials
NOX‑inhibiting biomaterials
Natural biomaterials have been widely investigated by 
many scholars in recent years, and the understanding 
of natural biomaterials is gradually becoming clearer. 
Some of these natural biomaterials, such as apocynin, 
can inhibit ROS production by inhibiting NOX activity 
or NOX-mediated ROS production, thus achieving anti-
inflammatory effects. For example, apocynin inhibits the 
production of ROS by inhibiting NOX-2. Thus, the phos-
phorylation activity of p38 MAPK is inhibited. This com-
pound blocks the transport of p47phox to the membrane 
and reduces NOX-2-dependent ROS production, which 
plays a protective role in some inflammasome experi-
mental models [229]. As it is nontoxic and can reduce 
markers of oxidative stress, the compound is widely used 
in animal models of inflammasome diseases, including 
collagen-induced arthritis, and it has significant preven-
tive properties. Similarly, apocynin plays a significant role 
in preventing inflammation in models of ulcerative colitis 
and asthma [230]. In addition, Qin et  al. demonstrated 
that cotreatment with apocynin and NADPH signifi-
cantly reduces infarct volume, improves poststroke sur-
vival, and can restore neurological function in a mouse 
model of stroke [231]. Other natural biomaterials are also 
associated with inhibiting NOX, such as celastrol and 
Honokiol. However, the relationship between these natu-
ral biomaterials and ROS inhibition or anti-inflammation 
is still unclear. Therefore, further studies on their specific 
mechanism are needed.

In addition to natural biomaterials, artificial biomate-
rials can also block the production of ROS by inhibiting 
NOX. Diphenyliodonium (DPI) is a specific and effective 
inhibitor of NOX that can reduce the activity of NOX 
and inhibit the production of ROS. The intracellular ROS 
levels, the number of inflammatory cells, and the levels of 
cytokines in DPI-treated rats with ALI were significantly 
reduced, which suggests that DPI can be used as a poten-
tial anti-inflammatory agent in ALI [232].

XO‑inhibiting biomaterials
Similarly, natural biomaterials account for an impor-
tant proportion of XO-inhibiting biomaterials. Stevia 
rebaudiana is a stevia plant of the Stevia genus in the 
Compositae family, and its extracts can exert antihy-
perglycemic, antihypertensive, anti-inflammatory, and 
antitumor effects and prevent acute and chronic liver 
injury, diuresis, and immune regulation. Mehmood et al. 
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prepared stevia residue extract (STVRE) that was rich 
in flavonoids and chlorogenic acid [233]. In vitro results 
showed that the IC50 value of STVRE in inhibiting XO is 
8.78 ± 0.89 μg·mL−1. In vivo STVRE has a beneficial effect 
on mice with hyperuricemia induced by fructose com-
bined with potassium oxyazinate, inhibiting XO activ-
ity and improving oxidative stress and the inflammatory 
response. Mulberry leaves are the dried leaves of Morus 
alba, a plant belonging to the Moraceae family. The main 
active ingredients in mulberry leaves are flavonoids, alka-
loids, phytosterols, gamma-aminobutyric acid, and poly-
saccharides, which lower blood pressure, lower blood 
glucose and lipids, and exert anti-inflammatory and anti-
tumor effects. Wan et  al. found that ethanol extracted 
from mulberry leaves could competitively inhibit XO 
activity in a dose-dependent manner [234]. This effect 
still needs to be verified by in vivo experiments, and the 
specific active ingredients need to be further studied.

In addition to natural biomaterials, it is believed that 
endogenous corticosterone can inhibit the expression 
of XO and thus inhibit inflammation. Wu et  al. found 
that a higher corticosterone concentration (higher than 
700  μg/L) downregulated NLRP3 expression within 2  h 
of inflammation, alleviated the inflammatory response in 
mouse macrophages, and inhibited the expression level 
of XO. The results showed that a higher concentration 
of corticosterone (higher than 700 μg/L) inhibits NLRP3 
expression in mouse macrophages [235].

LOX‑inhibiting biomaterials
At present, research on LOX-inhibiting biomaterials is 
limited to inhibitors of different LOX subtypes. Cerqua 
et al. found that indole compounds can act as dual inhibi-
tors of 5-LOX/sEH, showing significant anti-inflamma-
tory effects in mice with glycan-induced peritonitis and 
experimental asthma in  vivo [236]. The results provide 
a basis for using 5-LOX/sEH dual inhibitors as anti-
inflammatory agents. Nagesh Khadri et  al. found that 
(benzoylphenoxy)-N-[237] can act as an anti-inflamma-
tory COX/5-LOX inhibitor [237].

A novel dual pH/REDOX reactive polymer nanolipo-
some system (NL) loaded with copper ligand bioactive 
complexes has been designed as a controlled delivery 
system for the management of inflammation [238]. The 
NL was synthesized after preparation of the copper–gly-
glycine–prednisolone succinate ([(Cu(glygly)(PS)]) com-
plex and the dual pH/redox responsive biopolymer. The 
prednisolone succinate [Cu(glygly)(PS)] complex demon-
strates significant performance in scavenging free radi-
cals and inhibiting LOX-5. The results indicated that this 
novel cupric ligand bioactive drug delivery system has a 
controllable drug release mechanism and can be used as a 
potential drug delivery system for treating inflammation.

ETC‑regulating biomaterials
In addition to eliminating ROS by using Ce3 + and 
Ce4 + as SOD and CAT mimics through recyclable 
changes between CE3 + and CE4 + ,  CeO2 NPs can also 
inhibit ROS production through an effect on the METC. 
Li et  al. found that 1–100  μg/ml  CeO2 NPs effectively 
reduces superoxide flux in the METC in a concentration-
dependent manner [239]. Succinic acid-driven mito-
chondria isolated from macrophages also showed the 
inhibitory effects of the nanogranules. The results indi-
cated that  CeO2 NPs can effectively reduce the super-
oxide flux from METC in human macrophages, which 
may have important implications for protecting against 
inflammatory disease processes. Stahr et  al. discovered 
that Hst nanocrystals exert strong antioxidative effects 
according to an DPPH assay [240]. Hst, a flavonoid, is the 
aglycon of hesperidin. HstP is extracted from hesperidin 
by hydrolysis and can prevent mitochondrial dysfunc-
tion. HstP can reduce cell viability, prevent ROS forma-
tion, increase CAT activity, and prevent the reduction 
in mitochondrial membrane potential induced by  H2O2. 
Brain aging and age-related neurodegenerative disor-
ders are closely related to mitochondrial dysfunction. It 
is believed that mitochondrial dysfunction is a marker of 
these neurological disorders. For example, in AD, mito-
chondrial dysfunction is characterized by an impaired 
ETC, reduced levels of adenosine triphosphate (ATP), 
and elevated generation of ROS. Babylon et al. found that 
Hst nanocrystals are more beneficial in preventing mito-
chondrial dysfunction in a cellular model of early AD 
than pure Hst [241].

In conclusion, biomaterials that prevent ROS pro-
duction are a class of biomaterials that scavenge ROS 
effectively by blocking ROS generation at the source. 
However, this new type of biomaterial lacks tissue speci-
ficity and is unable to exert therapeutic effects due to the 
low bioavailability in specific organs. In addition, how to 
ensure that inhibiting ROS production does not affect the 
physiological roles of ROS still needs further research.

Challenges and perspectives
ROS scavenging biomaterials undoubtedly assist in treat-
ing inflammatory diseases by inhibiting ROS-mediated 
inflammation. However, many potential challenges and 
critical issues must be addressed in order to apply ROS 
scavenging materials that target oxidative stress to treat 
inflammatory diseases. For instance, there is still a lack 
of global and systematic understanding of the roles of 
ROS in inflammation. Different doses of ROS, different 
sources of ROS, or different sites of action result in dif-
ferent effects, which indicates that our understanding 
of ROS is still not complete [242]. The reason may be 
that current studies concentrate on a single pathway or 
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molecule while ignoring the causal relationship between 
ROS and inflammation and the complex regulatory 
mechanisms involved. Further research needs to focus on 
the network of ROS to understand the multiple roles of 
ROS in inflammation from a more complete perspective; 
such studies will contribute to the design of anti-inflam-
matory biomaterials and the understanding of their 
working mechanisms.

In addition, targeting biomaterials is a focus of current 
research. Currently, some material systems target lesion 
sites by utilizing the electrical charges of different tissues, 
changing the injection/administration methods, and set-
ting initiators and other spatiotemporal controls, which 
should be advocated [243, 244]. However, for most ROS 
scavenging biomaterials, targeting and establishing eval-
uation systems remains an urgent problem. On the one 
hand, we need to determine how to accurately deliver 
biomaterials to organs or tissues with dysregulated 
inflammatory responses. On the other hand, ROS from 
different sources may play different roles in the inflam-
matory response [171, 196, 197, 245], requiring bioma-
terials to precisely target ROS that negatively affect the 
body. The targeting of anti-inflammatory therapies to 
reduce side effects and improve treatment efficiency is 
likely to be a focus of future research.

It should also be noted that low levels of ROS are nec-
essary for biological activities, and they are important 
signaling molecules that regulate several physiologi-
cal functions, including inflammatory responses and 
metabolism [244]. Therefore, ROS scavenging biomateri-
als should aim to store the levels of ROS to physiological 
equilibrium as much as possible rather than completely 
scavenge ROS, which would cause a certain degree of 
damage to the body. In the biosafety field, it is necessary 
to monitor the normal biochemical processes mediated 
by ROS after the application of biological materials.

Conclusion
We summarize recent advances in treating inflammatory 
diseases with ROS scavenging biomaterials. The balance 
between ROS production and elimination under physi-
ological conditions, the relationship between ROS and 
inflammatory signaling pathways, and the application of 
biomaterials with different ROS scavenging mechanisms 
in inflammatory diseases are comprehensively reviewed 
to solve some problems that may be faced in this emerg-
ing field. When the body is exposed to various adverse 
stimuli and the physiological homeostasis of ROS is dis-
rupted, excessive ROS act as signaling molecules and 
toxic substances to activate inflammatory responses. 
Based on this, we reviewed ROS scavenging biomate-
rials that function by blocking the production of ROS, 

directly reacting with ROS, and accelerating the removal 
of ROS through catalysis. In this review, the mechanisms 
underlying ROS scavenging and the applications of these 
biomaterials in inflammatory diseases are introduced in 
detail.

In conclusion, the current development of ROS scav-
enging biomaterials for the treatment of inflammatory 
diseases has been rapid, offering countless possibilities 
for biomedicine as a promising therapeutic modality. 
Although some problems need to be carefully solved, the 
great possibilities of these biomaterials deserve further 
exploration. We hope this review will provide adequate 
information for the further development of this field, 
which would facilitate the more rapid development of 
anti-inflammatory biomaterials in the future.

Abbreviations
ROS  Reactive oxygen species
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LOX  Lipoxygenase
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NLRP3  Nod-like receptor family pyrin domain-containing 3
PRRs  Pattern-recognition receptors
PYD  Pyrin domain
NACHT  Central nucleotide-binding or oligomerization domain
LRRs  Leucine-rich repeats
pro-IL-1β  Pro-interleukin-1β
DN  Diabetic nephropathy
TRAPS  Tumor necrosis factor receptor-associated periodic 

syndrome
AD  Alzheimer’s disease
TRX  Thioredoxin
TXNIP  Thioredoxin-interacting protein
mtDNA  Mitochondrial DNA
IL-1β  Interleukin-1β
RHD  Rel homology domain
IKK  IκB kinase



Page 27 of 34Liu et al. Journal of Hematology & Oncology          (2023) 16:116  

COX-2  Cyclooxygenase-2
Th1  T-helper1
Tfh  T follicular
Jurkat JR  Jurkat cells
LPC  Lysophosphatidylcholine
PKD  Protein kinase D
NIK  NF-κB-inducing kinase
MAPK  Mitogen-activated protein kinase
ERKs  Extracellular signal-related kinases
p38  P38 kinase
JNKs  C-Jun N-terminal kinases
MAP3K  Mitogen-activated kinase kinase kinase
MAP2K  Mitogen-activated kinase
MAPKAPKs  MAPK-activated protein kinases
RSK  Ribosomal-S6-kinases
MSK  Mitogen- and stress-activated kinases
MNK  MAPK-interacting kinases
MK  MAPKAPKs
IFN-β  Interferon-β
TNF-α  Tumor necrosis factor-α
NAC  N-acetylcysteine
ROT  Rotenone
TRAF2  TNF receptor-associated factor 2
MLK3  Mixed lineage kinase 3
EGFR  EGF receptor
PDGFR  PDGF receptor
MKPs  MAPK phosphatases
JAK/STAT   Janus kinase/signal transducer and activator of 

transcription
PI3K  Phosphate kinase 3-kinase
RSV  Respiratory syncytial virus
Nrf2  Nuclear factor erythroid 2-related factor 2
CNC  Cap ‘n’ collar
Neh1-7  Nrf2-ECH homologous domains
sMaf  Small Maf
KEAP1  Kelch-like ECH-associated protein 1
ARE  AU-rich element
HO-1  Heme oxygenase-1
PKC  Protein kinase C
15d-PGJ2  15-Deoxyd-d-prostaglandin J2
ALI  Acute lung injury
PKB/AKT  Protein kinase B
PIP2  Phosphatidylinositol 4,5-diphosphate
PIP3  Phosphatidylinositol 3,4,5-triphosphate
PH  Pleckstrin homology
PDK  Phosphoinositol-dependent protein kinase
PTEN  Phosphatase and tensin homology
Gel  Gelatin
Alg  Alginate
Gel–Alg  Gelatin–alginate biocompatible hydrogel
GelMA  Methacrylated gelatin
NPG  Nanoporous gold
γ-PGAS  γ-PGA with taurine
SOD-PGAS/PGA-H  SOD-loaded γ-PGAS/γ-PGA hydrogel
PP  Poly (N-isopropyl-acrylamide)/poly (gamma-glutamic 

acid)
HA  Hyaluronic acid
HT  Hyaluronic acid-tyramine
TBI  Traumatic brain injury
MA  Malonic acid
SHP  Peptides from seahorse hydrolysates
BG  Bioactive glasses
CeO2 NPs  Cerium oxide nanoparticles
Ce3+  Trivalent cerium atoms
Ce4+  Tetravalent cerium atoms
CCNs  Chitosan-coated  CeO2 nanocubes
AMD  Age-related macular degeneration
SCI  Spinal cord injury
Mn-contained  Manganese-contained
MnMSN  Manganese-loaded mesoporous silica nanozyme
NPs  Nanoparticles

Se@Me@MnO2  Multishelled manganese dioxide-encapsulated 
selenium–melanin

Cu  Copper
Cu5.4O USNPs  Ultrasmall  Cu5.4O NPs
AKI  Acute kidney injury
ALI  Acute liver injury
ALS  Amyotrophic lateral sclerosis
MCP-1  Monocyte chemoattractant protein 1
Nps-Cur  Curcumin-loaded PLGA nanoparticles
TM/PC  Hydrogel-embedded curcumin
CSNM  Curcumin-loaded sandwich-like nanofibrous membrane
PDA  Polydopamine
HOO·  H2O2 radical
L-PDNPs  Lipid-coated PDA NPs
PDA@MF NPs  Polydopamine-wrapped manganese ferrite nanoparticles
TA  Tannic acid
PPBA-TA-PVA  TA-conjugated nanoparticle hydrogel
MoS@TA/Fe NSs  TA-chelated Fe-decorated molybdenum disulfide 

nanosheets
QCS  Quaternized chitosan
H2  Hydrogen
BBB  Brain‒blood barrier
NR  Nanoreactor
DMSO  Dimethyl sulfoxide
H2S  Hydrogen sulfide
SO4

2–  Sulfate
S2O3

–  Thiosulfate
SO2  Sulfur dioxide
PD  Parkinson’s disease
MS  Multiple sclerosis
DPI  Diphenyliodonium
MOSCs  Metal–organic supercontainers
4-OI  4-Octyl itaconate
B-NPs  Butyrate-supported chitosan/HA nanoparticles
SCFA  Short-chain fatty acid
STVRE  Stevia residue extract
NLs  Nanoliposome system
ATP  Adenosine triphosphate
MSC  Mesenchymal stem cells
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