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Abstract 

Hyperhomocysteinemia (HHcy) is closely associated with thrombotic diseases such as myocardial infarction 
and stroke. Enhanced platelet activation was observed in animals and humans with HHcy. However, the influence 
of HHcy on thrombopoiesis remains largely unknown. Here, we reported increased platelet count (PLT) in mice 
and zebrafish with HHcy. In hypertensive patients (n = 11,189), higher serum level of total Hcy was observed in par-
ticipants with PLT ≥ 291 ×  109/L (full adjusted β, 0.59; 95% CI 0.14, 1.04). We used single-cell RNA sequencing (scRNA-
seq) to characterize the impact of Hcy on transcriptome, cellular heterogeneity, and developmental trajectories 
of megakaryopoiesis from human umbilical cord blood (hUCB)  CD34+ cells. Together with in vitro and in vivo analysis, 
we demonstrated that Hcy promoted megakaryocytes (MKs) differentiation via growth hormone (GH)-PI3K-Akt axis. 
Moreover, the effect of Hcy on thrombopoiesis is independent of thrombopoietin (TPO) because administration 
of Hcy also led to a significant increase of PLT in homozygous TPO receptor (Mpl) mutant mice and zebrafish. Admin-
istration of melatonin effectively reversed Hcy-induced thrombopoiesis in mice. ScRNA-seq showed that melatonin 
abolished Hcy-facilitated MK differentiation and maturation, inhibited the activation of GH-PI3K-Akt signaling. Our 
work reveals a previously unrecognized role of HHcy in thrombopoiesis and provides new insight into the mecha-
nisms by which HHcy confers an increased thrombotic risk.
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To the Editor,
Elevated total serum level of homocysteine (tHcy), 
known as hyperhomocysteinemia (HHcy) [1], is a risk 
factor of cardiovascular disease, ischemic stroke, and 
venous thromboembolism [2, 3]. If untreated, approxi-
mately 50% of patients with severe HHcy due to genetic 
defects suffer from thrombotic events [4, 5], while 
even moderate HHcy increase the risk of thrombo-
sis [6]. However, the underlying mechanisms remains 
unclear. Platelets, anucleated cytoplasmic fragments 
derived from megakaryocyte (MK) [7, 8], are key pro-
tagonists in thrombotic disease [9–11]. The aim of the 
present study is to investigate the impact of HHcy on 
thrombopoiesis.

Analysis data from 11,189 participants of the China 
Stroke Primary Prevention Trial [12] revealed that, 
compared with low PLT (Q1), higher PLT (Q4) was 
positive correlated with higher tHcy (β = 0.59; 95% 
CI 0.14,1.04, p = 0.010) (Additional file  1: Tables S1–
S3 and Fig. S1). Analogous to human, a significant 
increase in PLT was detected in both male and female 
mice with HHcy (Fig.  1A; Additional file  1: Fig. S2, 
S3). Elevated thrombocytes were also observed in a 
zebrafish transgenic reporter line Tg(mpl:eGFP)smu4 

treated with Hcy (Fig.  1B, C). In a thrombopenia 
model, the days needed for 50% recovery of PLT from 
the nadir was shorter in HHcy mice (Fig.  1D). The 
possible contribution of the spleen to Hcy-increased 
PLT was excluded since the elevation of PLT remained 
unaffected in HHcy mice with splenectomy and the 
half-life of platelet was not affected (Fig.  1E; Addi-
tional file  1: Fig. S4). Furthermore, elevation in PLT 
was observed in Mpl mutant mice and zebrafish with 
HHcy (Fig.  1F–H), suggesting that HHcy facilitates 
thrombopoiesis independent of TPO.

To explore the influence of Hcy on the developmen-
tal trajectories of MKs, scRNA-seq was performed 
utilizing cells collected from a hUCB-derived  CD34+ 
cell differentiation system. Total 13 clusters including 
four MK clusters were identified (Fig.  1I; Additional 
file  1: Fig. S5). Gene ontology (GO) and high-activity 
regulons (HARs) analysis showed that MK0 represents 
a less mature population. MK2 is a mature thrombo-
cyte-forming cluster. MK1 serves as a transition state 
between MK0 and MK2. MK3 highly expresses genes 
associated with apoptotic signaling (Fig. 1J; Additional 
file  1: Fig. S6A). Pseudotrajectory analysis revealed a 
continuous development from MK0 to MK3, which 

(See figure on next page.)
Fig. 1 Hcy facilitates MKs differentiation and platelet production. A Peripheral PLT in C57BL/6J mice. Significance according to two-tailed unpaired 
t test (n = 8). B Representative images for staining and C quantification of mpl:eGFP+ cells (green) in zebrafish Tg(mpl:eGFP)smu4 larvae caudal 
hematopoietic tissue (CHT) region. Scale bars, 50 μm. Significance according to one-way ANOVA with Tukey multiple comparisons test (n = 10). 
D PLT recovery after platelet depletion by monoclonal rat anti-mouse CD42b antibody (Anti-CD42b MoAb). Significance according to two-tailed 
unpaired t test (n ≥ 5). E PLT in splenectomized mice. Significance according to two-tailed unpaired t test (n = 8). F PLT in C57BL/6J-Mplhlb219/J 
mice. Significance according to two-tailed unpaired t test (n ≥ 5). G Representative images for staining and H quantification of mpl:eGFP+ cells 
(green) at mpl-mutational zebrafish Tg(mpl:eGFP)smu4;mplsmu3 larvae CHT region. Scale bars, 50 μm. Significance according to Welch ANOVA test 
with Dunnett T3 multiple comparisons test (n = 10). I 13 cell clusters were displayed by UMAP. Colors indicate cell types. CMP, common myeloid 
progenitor; GMP, granulocyte-monocyte progenitor; MEMP, megakaryocyte-erythroid-mast cell progenitor; MK, megakaryocyte. J Bar diagram 
showing the representative GO biological process terms of MKs subpopulations. K Bar diagram showing the percentage of each MKs subpopulation 
number to all cells. L Venn diagram visualizing the up-regulated biological processes of each MKs subpopulation in Hcy group compared 
with control group. M Representative images of PPF detected by phase contrast imaging (left) and confocal microscopy (right). β1-tubulin (green) 
and DAPI (blue) were stained; Scale bars, 20 μm. N Histogram showing the number of PPF-MKs. Significance according to two-tailed unpaired t test 
(n = 6). O Representative images and P quantification of  CD41+ MKs (green) in mice femurs bone marrow by immunofluorescence staining. Scale 
bars, 50 μm. Significance according to two-tailed unpaired t test (n = 8). *p < 0.05, **p < 0.01, ***p < 0.001, ****p < 0.0001, ns not significant
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Fig. 1 (See legend on previous page.)
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is characterized by a “wave-like” fluctuating gene 
expression pattern (Additional file  1: Fig. S6B, C). 
Hcy increased the percentage of MKs, especially MK2 
(Fig.  1K). Gene set variation analysis (GSVA) revealed 
that, compared with control group, biological processes 
such as megakaryocyte differentiation and megakar-
yocyte development were significantly up-regulated 
in MK0-MK2 of Hcy group, indicating Hcy promotes 
MKs differentiation (Fig. 1L). We further validated the 
scRNA-seq data. The proplatelet (PPF: β1-tubulin+) 
was enlarged and the amount was increased with Hcy. 
The number of MKs  (CD41+) was increased in HHcy 
mice (Fig. 1M–P). Flow cytometry showed the propor-
tion of MKs  (CD41+CD42b+) was elevated with Hcy 
(Additional file 1: Fig. S7).

By integrating the scRNA-seq and bulk RNA-seq 
data from mouse bone marrow MKs (Fig.  2A, B), 
PI3K-related pathway and response to GH stimulus 
were the common up-regulated pathways in MKs of 
Hcy group. Western blotting confirmed Hcy increased 
the levels of phosphorylated PI3K (p-PI3K) and phos-
phorylated Akt (p-AKT) (Fig.  2C, D). LY294002, a 
PI3K inhibitor, blocked Hcy-facilitated MKs differen-
tiation and platelet production (Fig. 2E, F; Additional 

file  1: Fig. S8). Moreover, when the receptor of GH 
(GHR) was knocked down in Meg-01 cells by siRNA, 
Hcy-induced p-PI3K and p-Akt was dramatically 
attenuated (Additional file 1: Fig. S9). Consistently, no 
obvious increase in PLT nor the activation of PI3K-
Akt signaling was observed in Ghr−/− mice with HHcy 
(Fig.  2G–J). These data indicated that Hcy promotes 
MK differentiation via boosting the GH-PI3K-Akt 
axis.

Finally, scRNA-seq showed Hcy-increased MK2 pro-
portion was reversed by melatonin (MT) (Fig.  2K). MT 
blockaded Hcy-facilitated thrombopoiesis in mice with-
out decreasing the level of tHcy (Fig.  2L–N; Additional 
file  1: Fig. S10A). In addition, Hcy-increased throm-
bocytes in Tg(mpl:eGFP)smu4;mplsmu3 zebrafish was 
also reduced by MT (Additional file 1: Fig. S10B, C). As 
expected, Hcy-elevated MK-associated functions and 
PI3K-Akt signaling were attenuated by MT (Fig. 2O–R).

Overall, our work demonstrated a role of HHcy in MKs 
differentiation and characterized the underlying mecha-
nism. Further studies are needed to evaluate the impact 
of HHcy-promoted thrombocytosis on thrombotic 
disease.

Fig. 2 Hcy promotes MKs differentiation via GH-PI3K-Akt axis. A Venn diagram visualizing the elevated Pathway Interaction Database pathways 
of MKs subpopulations in Hcy group. B Heatmap showing the relative GSVA scores for each gene set based on bulk RNA-seq of BM MKs (n = 4). C 
and D Western blot analysis of p-PI3K and p-AKT (Ser473) in Meg-01 cells after exposure to Hcy (100 μM) for indicated time period. Total PI3K, AKT 
and GAPDH were used as loading control. Significance according to one-way ANOVA with LSD multiple comparisons test (n = 3). E Culture-derived 
MKs and F platelets were analyzed by flow cytometry. Significance according to one-way ANOVA with Tukey multiple comparisons test (n = 3). G 
PLT in Ghr−/− mice. Significance according to two-tailed unpaired t test (n = 6). H Quantification of  CD41+ MKs in femurs bone marrow of Ghr−/− 
mice. Significance according to Mann–Whitney test (n = 6). I and J Western blot analysis of p-PI3K and p-AKT (Ser473) in the bone marrow MKs 
after exposure to Hcy (100 μM) for 30 min. Significance according to one-way ANOVA with Tukey multiple comparisons test (n = 6). K Bar diagram 
showing the percentage of MK2 to all cells. L Peripheral PLT. Significance according to one-way ANOVA with Tukey multiple comparisons test (n = 8). 
M Representative images and N quantification of  CD41+ MKs (green) in femurs bone marrow of mice. Scale bars, 50 μm. Significance according 
to one-way ANOVA with Tukey multiple comparisons test (n = 8). O Bar chart showing the significantly down-regulated GO-BP terms and P PID 
pathways in MKs. T values are from the linear model in the limma package. Q–R Western blot analysis the level of p-PI3K and p-AKT (Ser473) 
in Meg-01 cells after exposure to Hcy (100 μM) with or without MT (1 μM) for 30 min. Significance according to one-way ANOVA with Tukey multiple 
comparisons test (n = 3). *p < 0.05, **p < 0.01, ***p < 0.001, ****p < 0.0001, ns not significant

(See figure on next page.)
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Fig. 2 (See legend on previous page.)
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