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Abstract 

Immunotherapy has transformed cancer treatments; however, a large fraction of patients encounter resistance. Such 
resistance is mediated by complex factors, often involving interactions between multiple genes. Thus, it is crucially 
important to identify genetic interactions between genes that are significantly mutated in cancer patients and those 
involved in immune responses, ideally the ones that currently have chemical compounds for direct targeting. To 
systematically interrogate such genetic interactions that mediate cancer cells’ response to T cell killing, we designed 
an asymmetric dual perturbation library targeting the matched combinations between significantly mutated tumor 
suppressors and immune resistance genes. We performed a combinatorial double knockout screen on 1159 gene 
pairs and identified those where joint loss-of-function renders altered cellular response to T cell cytotoxicity. We also 
performed comparative transcriptomics-based analyses on tumor and normal samples from TCGA and GTEx cohorts, 
mutational profiling analyses, and survival analyses to further characterize the significance of identified hits in clinical 
patients. Interactions between significantly mutated tumor suppressors and potentially druggable immune resist-
ance genes may offer insights on potential new concepts of how to target clinically relevant cancer mutations with 
currently available agents. This study also provides a technology platform and an asymmetric double knockout library 
for interrogating genetic interactions between cancer mutations and immune resistance pathways under various 
settings.
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To the editor,
Despite impressive durable responses elicited by cancer 
immunotherapy, the majority of patients do not see long-
term benefit with treatment [1, 2]. However, the molecu-
lar mechanisms that determine therapeutic resistance 
remain poorly understood, particularly genetic interac-
tions. To systematically interrogate such genetic inter-
actions that mediate immune resistance, we designed a 

Combinatorial Antineoplastic Drug Resistance Experi-
ment (CADRE) screening strategy with an asymmet-
ric library design (Fig.  1A, B). The CADRE library was 
synthesized via oligonucleotide array and cloned into 
lentiviral vectors (Additional file 1: Fig. S1A), and the rep-
resentations of double knockouts (DKOs), single knock-
outs (SKOs), and double non-targeting controls (DNTCs) 
in the library were verified by next-generation sequenc-
ing (NGS) (Additional file 1: Fig. S1C, D). We transduced 
B16F10;OVA;Cas9 cells at a low multiplicity of infection 
(MOI) (MOI < 0.2) at a coverage of approximately 500X. 
We NGS verified that the transduced pre-selection cell 
pool retained the vast majority of the CADRE library 
(Additional file 1: Fig. S1E).
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We then performed co-culture assays on library and 
non-library infected B16F10;OVA;Cas9 clone #3 cells 
(BC3 cells) with OT-I CD8 + T cells. Both library and 
non-library transduced cells showed comparable sur-
vival across E:T ratios, with the exception of at the high 
E:T ratio conditions (E:T ratios > 1) where the mutant 
pool demonstrated a significant increase in resistance 
(Fig. 1C). We then performed the co-culture screen with 
BC3-CADRE cells and OT-I CD8 + T-cells, followed by 
library NGS readout (Additional file  1: Fig. S2A). Clus-
tering analysis showed distinct clusters between plasmid, 
cell populations before co-culture, and cell populations 
post co-culture (Additional file  1: Fig. S2B), suggesting 
a high-quality screen and NGS readout between the cell 
pool conditions and E:T ratios 2–5 (Fig.  1D). There are 
strong shifts between pre-selection and post-selection 
co-cultures (Additional file  1: Fig. S2C), indicative of 
strong selection seen at sgRNA library levels.

At a false-discovery rate (FDR) of 1.19% we identi-
fied 222 enriched sgRNA pairs of which 194 (87.4%) are 
associated with Janus kinase 1 (Jak1) or Janus kinase 2 
(Jak2), including DKO and SKO constructs. Bulk analy-
sis revealed that Jak-associated sgRNAs dominated the 

enrichment in the screen post-selection (Fig.  1E; Addi-
tional file  1: Fig. S3A–D). We found that Jak1/2-associ-
ated gene pairs were the most statistically significantly 
different from their constitutive SKOs (Fig. 1E, F; Addi-
tional file  1: Fig. S3E, F), suggestive of potential gene 
interactions. We observe that gene pairs Jak1_Trp53, 
Jak1_Nf1, and Jak1_Rb1 have higher observed enrich-
ment for double knockout than expected (adjusted 
p-value < 0.001) suggesting potential additive gene inter-
action (Fig.  1F), while gene pairs Jak1_Apc, Jak1_Vhl, 
Jak1_Kmt2c, Jak1_Kmt2d, Jak1_Arid1a, Jak1_Fbxw7, 
Jak1_Ctnnb1 have lower observed enrichment for double 
knockout than expected, suggesting potential subtractive 
gene interaction (Fig.  1F). Boxplots of normalized read 
counts for Jak1_Kmt2d, Jak2_Kmt2d, Jak1_Trp53 and 
Jak2_Trp53 (Fig.  2A–D) also suggest potential subtrac-
tive and additive phenotypic interactions to Jak1/2 per-
turbation for Kmt2d and Trp53, respectively. However, 
it should be noted that although significant, the putative 
gene interaction signals appear to be modest in part due 
to the strong resistance phenotype of single knockout of 
JAK1/2.

Fig. 1  Asymmetric double knockout CRISPR screen of gene pairs that affect cancer cell response to T cell killing. A Schematic overview of CADRE 
screen. B Schematic of CADRE library design, 61 genes with immunotherapy resistance were crossed in combinatorial fashion with 19 significantly 
mutated tumor suppressors to create a DKO pool. SKOs and NTCs serve for comparison and as controls. C Titration of BC3 cells, and BC3 CADRE 
cells co-cultured with E:T ratios ranging from 0.1 to 5. High E:T ratios demonstrated significant phenotypic differences and were therefor selected 
for screening (q values of 1.76e-3 and 1.19e-2 by multiple T test, 1% FDR for E:T ratios 2 and 5, respectively). *, adjusted p-value < 0.05. **, adjusted 
p-value < 0.01. ***, adjusted p-value < 0.001. D Principal component analysis (PCA) of the sgRNA pair read count distributions across screens, 
E:T ratios, technical replicates, and pre-T cell treatment controls. E Scatterplots comparing guide representation of the CADRE library in post 
co-culture samples averaged across all replicates, E:T ratios, and screens compared to pre-selection infected cell controls. Jak1- and Jak2-associated 
sgRNA pairs (either DKO or SKO) are marked in red. F Scatterplot comparing Bonferroni-adjusted p value determined by outlier test compared to 
Studentized residuals from linear regression analysis in Additional file 1: Fig. S3F
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We looked at the global gene expression profiles of 
KMT2D, JAK1, TP53, and IFNGR1 across all tumor 
samples and paired normal tissues (Additional file  1: 
Fig. S4A–D) and more specifically for KMT2D and 
JAK1 in the SKCM cohort (Fig.  2E–G) and identified 
tumor-type specific expression patterns. We found 
that the effector and exhaustion T cell signatures 
were upregulated in the tumor samples in melanoma 

patients (Fig. 2G). Cell proportion deconvolution anal-
yses revealed increased estimated proportions of CD8 
T cells, memory-activated CD4 T cells, and Tregs in the 
tumor samples, with a decrease of naïve and memory 
resting CD4 T cells (Fig. 2H).

Genes negatively correlated with KMT2D were fur-
ther analyzed using DAVID gene ontology functional 
annotation (Fig. 2F). We found positive and significant 

Fig. 2  Genetic analysis of gene pairs that affect cancer cell response to T cell killing. A–D Tukey box plots (IQR boxes with 1.5 × IQR whiskers) 
overlaid on dot plots of sgRNA pair abundances for each DKO, SKO, and DNTCs for pre-T cell treatment controls (also labeled as “cell”) and 
post-selection co-culture samples with reads pooled from samples across screens, E:T ratios, and technical replicates. Count distributions are 
shown for gene pairs Jak1_Kmt2d, Jak2_Kmt2d, Jak1_Trp53, and Jak2_Trp53. E Boxplots of KMT2D and JAK1 expression in RNA-seq samples from 
the TCGA SKCM melanoma cohort and paired normal samples (461 tumor samples, 558 normal samples). *, q-value < 0.01 and |log2FC|> 0.5. F Bar 
plots of top enriched pathways identified by DAVID biological processes analyses of genes negatively (left) and positively (right) correlated with 
KMT2D expression in 473 melanoma RNA-seq samples from TCGA. G Boxplots of effector T-cell gene signatures (CX3CR1, FGFBP2, FCGR3A) and 
exhausted T-cell gene signatures (HAVCR2, TIGIT, LAG3, PDCD1, CXCL13, LAYN) in RNA-seq samples from the TCGA SKCM melanoma cohort and paired 
normal samples (461 tumor samples, 558 normal samples). *, q-value < 0.01 and |log2FC|> 0.5. H Boxplots of normalized cell type proportions from 
CIBERSORT deconvolution analyses of TCGA-SKCM and GTEx normal skin RNA-seq samples for T cells. Statistics shown on plots. I Kaplan–Meier 
curves showing the survival of melanoma patients from the GSE22153 cohort based on the expression status of KMT2D and linked to estimated 
cytotoxic T lymphocyte (CTL) levels. Analyses performed with the Tumor Immune Dysfunction and Exclusion (TIDE) algorithm. Statistics shown on 
plot
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correlations for both JAK1 and IFN-gamma signal-
ing gene signatures across both the SKCM cohort and 
across 33 different cancer types from TCGA (Addi-
tional file 1: Fig. S5A). KMT2D and JAK1 are both fre-
quently mutated in melanoma patients (Additional 
file  1: Fig. S5B). Mutual exclusivity and co-occurrence 
analyses for all pairwise combinations of KMT2D, 
JAK1, JAK2, IFNGR1, and TP53 suggest that all muta-
tion combinations except JAK2-IFNGR1 co-occur at a 
significant rate (Additional file 1: Fig. S5C).

We also performed survival analyses on patient 
cohorts with the  public database TCGA (The Cancer 
Genome Atlas) (Additional file 1: Figs. S4E, F, S5D, E). 
Survival maps (Additional file 1: Fig. S4G, H) revealed 
cancer-type specific effects of KMT2D, JAK1, JAK2, 
IFNGR1, or TP53 expression levels on patient survival. 
The KMT2D-low patient group demonstrated increased 
CTL-associated overall survival benefit, whereas high 
levels of KMT2D abolished the overall survival benefit 
of CTL-high patients (Fig. 2I).

Altogether, we demonstrate how dual loss-of-func-
tion CRISPR screens with asymmetric library designs 
can resolve complex phenotypes such as resistance to 
T cell killing.
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