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Abstract 

Background:  The role of allogeneic hematopoietic cell transplantation (alloHCT) in acute myeloid leukemia (AML) 
with mutated IDH1/2 has not been defined. Therefore, we analyzed a large cohort of 3234 AML patients in first com‑
plete remission (CR1) undergoing alloHCT or conventional chemo-consolidation and investigated outcome in respect 
to IDH1/2 mutational subgroups (IDH1 R132C, R132H and IDH2 R140Q, R172K).

Methods:  Genomic DNA was extracted from bone marrow or peripheral blood samples at diagnosis and analyzed 
for IDH mutations with denaturing high-performance liquid chromatography, Sanger sequencing and targeted 
myeloid panel next-generation sequencing, respectively. Statistical as-treated analyses were performed using R and 
standard statistical methods (Kruskal–Wallis test for continuous variables, Chi-square test for categorical variables, Cox 
regression for univariate and multivariable models), incorporating alloHCT as a time-dependent covariate.

Results:  Among 3234 patients achieving CR1, 7.8% harbored IDH1 mutations (36% R132C and 47% R132H) and 
10.9% carried IDH2 mutations (77% R140Q and 19% R172K). 852 patients underwent alloHCT in CR1. Within the 
alloHCT group, 6.2% had an IDH1 mutation (43.4% R132C and 41.4% R132H) and 10% were characterized by an IDH2 
mutation (71.8% R140Q and 24.7% R172K). Variants IDH1 R132C and IDH2 R172K showed a significant benefit from 
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Background
Isocitrate dehydrogenase (IDH) gene mutations are 
among the most common genetic alterations in acute 
myeloid leukemia (AML), detected in 15–20% of patients 
with AML [1, 2]. They represent mutational alterations in 
early leukemogenesis [3]. Still, their prognostic and pre-
dictive relevance is not fully resolved and standard AML 
risk stratification does not yet include IDH1 or IDH2 
mutations [4]. However, there is growing evidence that 
IDH mutations contribute both prognostic and predic-
tive value [2, 5, 6]. There have been inconsistent results 
regarding outcome, including complete remission (CR) 
rate, relapse-free survival (RFS) and overall survival (OS) 
depending on IDH1 and IDH2 mutational status, respec-
tively [2, 7–12]. For example, some reports attribute a 
favorable prognosis to IDH mutations [8, 13], whereas 
other reports indicate an adverse prognosis for patients 
with IDH mutations [2, 10, 14–16]. Furthermore, some 
data suggest the existence of IDH mutations have no 
impact on survival [11, 12]. Supposedly, this is based on 
different biologic features of certain subtypes of muta-
tions and co-mutational patterns.

To date, two isoforms of IDH are known to be poten-
tially mutated in AML encoded on chromosome 2 band 
q33 (IDH1) and chromosome 15 band q26 (IDH2), 
respectively [15, 17, 18]. IDH1 is localized in the cyto-
plasm and IDH2 is found in mitochondria [19]. Their 
physiologic role is the enzymatic involvement in the cit-
rate metabolism (Krebs cycle) catalyzing decarboxylation 
of isocitrate to α-ketoglutarate (α-KG) in an NADP+ 
associated manner. IDH mutations induce the loss of 
this catalytic activity, leading to reduction of α-KG and 
to the production of the oncometabolite 2-hydroyglutar-
ate (2-HG) accumulating in leukemic cells [20, 21]. 2-HG 
potentially alters gene expression via DNA and histone 
hypermethylation and hereby blocks differentiation of 
hematopoietic progenitor cells [7, 22].

During the last decade, certain mutational subtypes 
including hotspot mutations affecting codon 132 of 
IDH1, as well as codon R140 and R172 of IDH2 were 
identified and have been associated with differential 
enzymatic potential, consequently suggesting these vari-
ants to contribute to disease heterogeneity as well as to 
contradictions in prognostic predictions [19, 23, 24].

From a therapeutic point of view, they represent attrac-
tive drugable targets in clinical routine, as IDH inhibitors 
(e.g., ivosidenib for IDH1 mutations and enasidenib for 
IDH2 mutations) have been introduced for patients with 
relapsed or refractory AML (r/r AML) and/or elderly/
frail AML patients as firstline therapy harboring IDH 
mutations with promising results regarding response 
and survival [25–27]. Recent reports also demonstrated 
promising results with the combination of IDH inhibi-
tors and hypomethylating agents as frontline therapy [28, 
29]. Further, IDH inhibitors are investigated in prospec-
tive clinical phase I and II trials as maintenance ther-
apy after allogeneic hematopoietic cell transplantation 
(alloHCT) and/or salvage strategies in case of relapse 
in the posttransplant setting (e.g., NCT03564821 and 
NCT04522895).

So far, the role of alloHCT for IDH mutated (IDHmut) 
AML patients is based on reports from studies with 
rather small patient numbers or from monocentric analy-
ses [30, 31]. The aim of this study was to evaluate the pre-
dictive impact of defined IDH mutational subgroups on 
outcome of alloHCT in first complete remission (CR1) 
after intensive induction therapy in a well-defined, large 
multi-center cohort of IDHmut AML patients.

Patients and methods
Patients
For analysis, we studied a cohort that comprised a total 
of 3234 intensively treated AML patients under 70 years 
who either underwent alloHCT (n = 852) or chemo-
consolidation (n = 2382) in CR1. Only patients with suf-
ficient material of bone marrow (BM) and/or peripheral 
blood (PB) samples available were included in this study. 
Patients were enrolled within the prospective SAL AML 
registry (NCT03188874) or one of the following clini-
cal trials: AML96 [32], AML2003 [33], AMLCG1999 
[34], AML60+ [35], AMLCG2008 [36], and SORAML 
[37] (Additional file 1: Table S1). Briefly, intensive chem-
otherapy regimens consisted of anthracyclines com-
bined with cytarabine in standard dosing. Patients were 
not treated with IDH1- or IDH2-inhibitors. Treatment 
response and outcome measures were classified accord-
ing to standard criteria [4, 38, 39]. All patients gave their 
written informed consent on analyses of data. The study 

alloHCT for OS (p = .017 and p = .049) and RFS (HR = 0.42, p = .048 and p = .009) compared with chemotherapy only. 
AlloHCT in IDH2 R140Q mutated AML resulted in longer RFS (HR = 0.4, p = .002).

Conclusion:  In this large as-treated analysis, we showed that alloHCT is able to overcome the negative prognostic 
impact of certain IDH mutational subclasses in first-line consolidation treatment and could pending prognostic valida‑
tion, provide prognostic value for AML risk stratification and therapeutic decision making.

Keywords:  Acute myeloid leukemia, IDH mutations, Allogeneic hematopoietic cell transplantation
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was approved by the respective ethics committees and 
conducted in accordance to the Declaration of Helsinki.

Molecular and cytogenetic analyses
Pre-treatment BM or PB samples were used for genomic 
DNA isolation. After DNA extraction, samples were 
screened for IDH1 and IDH2 mutations. Samples col-
lected until 2016 were analyzed in a batched fashion, 
from 2016 onwards, samples were analyzed in real time. 
AML patients treated within trials of the SAL registry 
were screened by denaturing high-performance liquid 
chromatography (DHPLC) as previously described [40]. 
In case of aberrant DHPLC-chromatograms, samples 
were analyzed either by Sanger sequencing or by sensi-
tive ultradeep next-generation sequencing (NGS) [41]. 
Another NGS-based myeloid panel approach (TruSight 
Myeloid Panel, Illumina, San Diego, CA, USA) focus-
ing on genes frequently mutated in hematopoietic mye-
loid entities was used for a subset of SAL registry AML 
patients [42]. Concordant results were obtained in all 
SAL patient samples when samples were analyzed with 
both methods. Concordance was analyzed based on a 
set of 50 samples representing all mutational variants. 
A custom targeted NGS assay was deployed for patients 
enrolled in AML-CG trials [43]. Further mutational pro-
files (e.g., FLT3 and NPM1 mutations) were analyzed as 
described previously [44, 45]. The lower limit of detec-
tion was determined with 0.1% for ultradeep NGS and 
1–5% for DHPLC and panel NGS.

Statistical analyses
Statistical as-treated analyses on the impact of differ-
ent IDH1 or IDH2 mutational subclasses were carried 
out using the free statistical computing environment R 
(Version 4.0.3). Continuous variables were compared 
using the Kruskal–Wallis test, while the Chi-square 
test was used to compare categorical variables between 
mutational groups. OS is reported for the whole cohort 
from study entry until date of death and was censored 
on date of last follow-up, if no death occurred; RFS is 
reported from date of CR1 until disease relapse or death 
and was censored on date of last follow-up. CR and 
survival rates were evaluated according to the current 
standard ELN criteria [4]. Effects of alloHCT were esti-
mated using Cox regression models with alloHCT mod-
eled as time-dependent covariate. Simon–Makuch plots 
were applied to visualize survival according to trans-
plant status. To reduce bias toward benefit of alloHCT 
due to very early deaths of patients, landmarks of three 
months for OS (estimated time including two courses 
of induction therapy and scheduling alloHCT) and one 
month for RFS (anticipated time from CR1 after induc-
tion therapy until alloHCT) were implemented. Due to 

the time-dependent modeling of alloHCT, all patients 
start in the non-alloHCT group. Therefore, number 
at risk in the non-alloHCT groups at start of observa-
tional period includes also patients transplanted later. 
Number at risk of the alloHCT groups at time 0 reflects 
the number of patients at risk that changed from the 
non-alloHCT group to the alloHCT group until the 
first event or censoring was observed in that group, but 
not earlier than the landmark. Cox regression was also 
applied to identify independent prognostic variables for 
survival and to estimate univariate and adjusted hazard 
ratios (HR). Multivariable analysis included alloHCT 
in CR1, age at diagnosis, ELN risk group, secondary 
AML, therapy-related AML and ECOG performance 
status at diagnosis. The significance level was set at 
0.05. For interaction analysis, we used multivariate 
Cox proportional hazard regression to analyze survival 
with respect to several variables simultaneously and to 
provide the hazard ratio for each factor. Furthermore, 
we performed  multivariate Cox regression  analysis to 
study the effect of the interaction of alloHCT and the 
respective IDH submutational groups on outcome.

Results
Patients’ characteristics
The study cohort consisted of 3234 patients with AML, 
whereof a total of 852 patients received alloHCT in 
CR1 after intense induction therapy. Patients carry-
ing an IDHmut were significantly older than patients 
carrying the wildtype allele (IDHWT) (p < 0.001). Com-
pared to IDHWT and IDH1mut, patients with IDH2mut 
were characterized by a significantly lower serum LDH 
(p = 0.012), whereas IDH1mut patients showed a median 
higher count of peripheral blasts compared to IDHWT 
and IDH2mut patients (p < 0.001) and bone marrow 
blasts (p < 0.001) at diagnosis, respectively. Regard-
ing other laboratory findings, IDH1mut and IDH2mut 
patients had comparable platelet counts at diagno-
sis, which were significantly higher than those found 
in IDHWT patients (< 0.001). The IDHmut cohort har-
bored a significantly lower rate of complex karyotypes 
(p < 0.001), with IDH1mut patients being associated 
with the lowest rate. Also, patients harboring IDH1 
mutations were more likely to be associated with the 
ELN2017 favorable-risk and less likely associated with 
the ELN 2017 adverse-risk category (p < 0.001), while 
patients without IDH mutations and IDH2mut patients 
showed similar distributions. No differences in gender, 
AML subtype (de novo AML, secondary AML, ther-
apy-related AML), white blood count or hemoglobin 
were detected between IDHmut and IDHWT patients. An 
overview of relevant results is depicted in Table 1.
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Table 1  Overview of the study patients’ characteristics

p-Values indicating parameters that show significant differences are highlighted in bold

AML patients analyzed for IDH mutations P-value

n = 3234

IDHWT IDH1mut IDH2mut

n = 2638 n = 253 n = 353

Age (years), median (IQR) 51 (40–59) 54 (44–62) 55 (47–62) < .001
Sex, n/N (%) .845

 Female 1312/2638 (49.7) 130/253 (51.4) 179/353 (50.7)

 Male 1326/2638 (50.3) 123/253 (48.6) 174/353 (49.3)

Disease status, n/N (%) .082

 De novo 2238/2622 (85.4) 228/252 (90.5) 304/353 (86.1)

 sAML 255/2622 (9.7) 21/252 (8.3) 34/353 (9.6)

 t-AML 129/2622 (4.9) 3/252 (1.2) 15/353 (4.2)

 Hb (mmol/l), median (IQR) 5.71 (4.9–6.7) 5.65 (5.1–6.6) 5.84 (5–6.8) .215

 Platelets (Gpt/L), median (IQR) 51 (28–95) 71 (36–126) 72 (41–147) < .001
 WBC (Gpt/L), median (IQR) 14.98 (3.9–49.1) 12.51 (2.6–44.2) 12.6 (2.8–45.3) .824

 Bone marrow blasts (%), median (IQR) 63 (40–80) 73 (54–88) 70 (44–83) < .001
 Peripheral blasts (%), median (IQR) 27 (7–63) 50 (15–81) 36 (9–70) < .001
 LDH (U/L), median (IQR) 430 (273–760.8) 425.4 (261–762) 368 (236–624) .012
 Complex karyotype, n/N (%) 258/2532 (10.2) 4/235 (1.7) 14/336 (4.2) < .001

ELN risk 2017, n/N (%) < .001
 Favorable 998/2462 (40.5) 117/227 (51.5) 132/332 (39.8)

 Intermediate 886/2462 (36) 89/227 (39.2) 132/332 (39.8)

 Adverse 578/2462 (23.5) 21/227 (9.3) 68/332 (20.5)

 NPM1 mut, n/N (%) 840/2621 (32) 149/252 (59.1) 160 (45.3) < .001
 FLT3-ITD mut, n/N (%) 629/2630 (23.9) 55/252 (21.8) 82/353 (23.2) .741

 CEBPA mut, n/N (%) 220/2595 (8.5) 3/253 (1.2) 18/351 (5.2) < .001
 IDH1 mut, n/N (%) 0/2638 (0) 253/253 (100) 10/353 (2.8)

 R132C – 92/253 (36.4) 1/10 (10)

 R132G – 17/253 (6.7) 1/10 (10)

 R132H – 118/253 (46.6) 8/10 (80)

 R132L – 12/253 (4.7) –

 R132S – 14/253 (5.5) –

IDH2 mut, n/N (%) 0/2638 (0) 10/253 (4) 353/353 (100)

 R140G – – 1/351 (0.3)

 R140L – – 6/351 (1.7)

 R140Q – 10/10 (100) 269/351 (76.6)

 R140 W – – 4/351 (1.1)

 R172K – – 68/351 (19.4)

 R172S – – 1/351 (0.3)

 V161L – – 1/351 (0.3)

 WT – – 1/351 (0.3)

 IDH1 and IDH2 mut, n/N (%) 0/2638 (0) 10/253 (4) 10/353 (3)

 IDH VAF (%), median (IQR) – 39 (26.2–43.2) 38.1 (31.7–43.6) .252

 alloHCT in CR1, n/N (%) 714/2638 (27.1) 53/253 (20.9) 85/353 (24.1) .066
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IDH mutations and mutational subgroups
In our cohort of AML patients undergoing either 
alloHCT or chemo-consolidation in CR1, 18.4% (n = 596) 
had an IDHmut with a median variant allele frequency 
(VAF) of 39% (IQR 26.2–43.2) for IDH1 and 38.1% 
(IQR 31.7–43.6) for IDH2. A total of 7.8% (n = 253) had 
mutated IDH1, 10.9% (n = 353) had mutated IDH2, while 
0.3% (n = 10) had mutations in both IDH1 and IDH2. The 
most common IDH1 mutational subgroups were R132C 
(36%) and R132H (47%), while R132G, R132L and R132S 
were present in only few patients (7%, 5% and 6%, respec-
tively). The two most frequent IDH2 mutations were 
R140Q (77%) and R172K (19%) with only a minority of 
patients (4%) carrying R140G, R140L, R140W, R172S, 
V161L or WT subtypes.

The patients’ distributions were as follows (Fig.  1): 
Among the 852 patients undergoing alloHCT in CR1, 
16.2% (n = 138) harbored an IDHmut. Here, a similar dis-
tribution of IDHmut could be seen: 6.2% (n = 53) harbored 
an IDH1 mutation, and again the two major subgroups 
were R132C (43.4%) and R132H (41.5%) with small num-
bers of patients mutated in R132G, R132L and R132S 
(1.9%, 9.4% and 3.8%, respectively). IDH2 mutations were 
found in 10% (n = 85) of alloHCT patients, also with 
similar distributions of IDH2 subgroups R140Q (71.8%) 
and R172K (24.7%), with a minority of patients carry-
ing R140L (2.4%) and R140W (1.2%). No patients of the 
alloHCT group had mutations in both IDH1 and IDH2. 
The non-alloHCT consolidation group included 19.2% 
(n = 458) IDHmut patients. Among these patients, 8.4% 
(n = 200) and 11.3% (n = 268) carried IDH1 and IDH2 
mutations, respectively. Only a minority were charac-
terized by mutations in both IDH1 and IDH2 (0.4%). In 
line with the data of the alloHCT group, the two major 

IDH1 subgroups in the non-alloHCT cohort were R132C 
(34.5%) and R132H (48%) and few patients harbored 
R132G, R132L and R132S (8%, 3.5% and 6%, respectively). 
Comparing the alloHCT and the non-alloHCT group 
regarding IDH mutational distribution, the alloHCT 
cohort was characterized by a significant lower percent-
age of IDH1 mutations (p = 0.042), while there was no 
statistically differential distribution of IDH2 mutations 
between these two groups (p = 0.306).

Co‑mutational characteristics
Regarding co-mutational aspects, the majority of the 
study cohort had at least two different mutations, with 
only 3.5% of the IDHWT patients, 0.9% of patients carry-
ing an IDH1mut and none of the patients with an IDH2mut 
without any co-mutation at all (p = 0.012). On the other 
hand, significant results could be found in the following 
co-mutational pairs: a significantly higher rate of con-
comitant NPM1 mutations was seen in IDHmut patients, 
with IDH1mut patients being characterized by the highest 
rate of co-occurring NPM1 mutations (IDH1mut 59.1% 
vs. IDH2mut 45.3% vs. IDHWT 32%, p < 0.001). In contrast, 
the FLT3-ITD co-mutational frequency was not sig-
nificantly different between IDHWT and IDHmut patients 
(p = 0.741). Despite small number of events, other muta-
tions affecting signaling still showed significant lower 
rates in the presence of IDHmut, including mutations in 
NRAS (IDH1mut 6.1% vs. IDH2mut 5.6% vs. IDHWT 12.3%, 
p = 0.006). Biallelic mutations in CEBPA were found with 
a significantly lower frequency in IDHmut patients (IDH-
1mut 0.5% vs. IDH2mut 1.1% vs. IDHWT 6.4%, p < 0.001). 
Further, we detected possible co-mutational patterns 
with tumor suppressors like WT1 (IDH1mut 1.7% vs. IDH-
2mut 2.2% vs. IDHWT 7%, p = 0.006). Epigenetic modifiers 

Fig. 1  Consort diagram of patients’ distributions. Consort diagram of the study cohorts’ distribution according to the type of consolidation strategy 
(alloHCT vs. chemo-consolidation), IDH mutational status and respective submutational groups
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like mutations in DNMT3A and TET2 were also signifi-
cantly differentially mutated according to IDHmut status 
(IDH1mut 26.1% vs. IDH2mut 32.8% vs. IDHWT 17.4%, 
p < 0.001 and IDH1mut 3.5% vs. IDH2mut 7.2% vs. IDHWT 
12.4%, p = 0.003, respectively). Also, mutations in tran-
scription factor GATA2 and cohesion complex STAG2 
significantly differed between the IDHmut and IDHWT 
population (IDH1mut 0.9% vs. IDH2mut 2.2% vs. IDHWT 
6.5%, p = 0.005 and IDH1mut 4.3% vs. IDH2mut 6.7% vs. 
IDHWT 2.9%, p = 0.029, respectively). An overview of co-
mutational distributions is given in Fig. 2 and Table 2.

Impact of alloHCT on survival according to IDH 
mutational subgroups
Regarding the whole cohort undergoing alloHCT or 
conventional chemo-consolidation in CR1, a significant 
survival benefit for alloHCT in both IDHWT and IDH-
mut group was revealed (Fig.  3). This positive effect for 
alloHCT is valid for OS (HR = 0.8, 95% CI 0.69–0.96, 
p = 0.012; Fig.  3a), as well as RFS (HR = 0.6, 95% CI 

0.54–0.73, p < 0.001; Fig. 3b). Median OS was 49 months 
(IDHWT non-alloHCT) versus 46  months (IDHmut non-
alloHCT) versus 110  months (IDHWT alloHCT), while 
the IDHmut cohort receiving alloHCT did not reach 
median OS. Median RFS was 17  months (IDHWT non-
alloHCT) versus 17  months (IDHmut non-alloHCT) vs. 
74  months (IDHWT alloHCT), while median RFS was 
also not reached in the IDHmut cohort receiving alloHCT. 
Interestingly, when undergoing alloHCT, a trend toward 
better OS and RFS could be detected in the IDHmut group 
compared with the IDHWT group. Vice versa, a nega-
tive trend for survival was revealed in IDHmut patients 
compared with IDHWT patients when receiving chemo-
consolidation only (Fig.  3). Overall, there was no statis-
tical difference in OS of either consolidation strategy 
for patients carrying an IDH1 mutation (5-year OS 40% 
[non-alloHCT] vs. 47% [alloHCT], p = 0.27; Fig.  4a), 
alloHCT led to a better RFS in univariate analysis (5-year 
RFS 30% [non-alloHCT] vs. 51%, p = 0.009; Fig.  4b). In 
contrast, IDH2mut patients gained an advantage in OS 

Fig. 2  Heatmap of frequent co-mutations according to IDH mutation status. Heatmap grouped for epigenetic, signaling, transcription, cohesion 
and splicing pathways of AML patients achieving CR1 with IDH wildtype (IDH-wt) or mutated IDH (IDH-mut). Only patients from the SAL registry 
with a full dataset of myeloid panel sequencing were included
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when undergoing alloHCT in univariate analysis (5-year 
OS 46% [non-alloHCT] vs. 61% [alloHCT], p = 0.026; 
Fig. 4a) and RFS was significantly better for alloHCT in 
multivariable analysis (5-year RFS 30% [non-alloHCT] 
vs. 60% [alloHCT]; HR = 0.49, 95% CI 0.3–0.8, p = 0.004; 
Fig. 4b).

More importantly, the relevance of mutational sub-
types in IDH1 and IDH2 on survival could be delineated 
in our analysis (Fig. 5). Patients with IDH1 R132C had a 
higher OS when undergoing alloHCT in univariate analy-
sis (5-year OS 40% [non-alloHCT] vs. 73% [alloHCT], 
p = 0.017; Fig.  5a), which was even more pronounced 
for RFS in multivariable analysis (5-year RFS 27% [non-
alloHCT] vs. 55% [alloHCT]; HR = 0.42, 95% CI 0.17–1, 
p = 0.048; Fig. 5b). However, IDH1 R132H was not associ-
ated with superior survival (Fig. 5a,b). AlloHCT patients 
carrying IDH2 variant R140 mutations showed no sig-
nificant difference in OS regarding the respective con-
solidation strategy (Fig. 5c), but significantly higher RFS 

compared with the chemo-consolidation group in multi-
variable analysis (5-year RFS 31% [non-alloHCT] vs. 58% 
[alloHCT]; HR = 0.4, 95% CI 0.23–0.7, p = 0.002; Fig. 5d). 
IDH2 variant R172 was associated with increased OS 
and RFS when undergoing alloHCT in univariate analy-
sis (5-year OS 43% [non-alloHCT] vs. 68% [alloHCT], 
p = 0.049; Fig. 5c and 5-year RFS 25% [non-alloHCT] vs. 
64% [alloHCT]; p = 0.009, respectively; Fig. 5d).

Multivariable analysis
Further multivariable modeling of established fac-
tors affecting survival of AML patients (Additional 
file  1: Fig. S1) revealed significant results regarding age 
(HR = 1.03, p < 0.001), favorable (HR = 0.6, p < 0.001) 
and adverse (HR = 1.7, p < 0.001) risk category accord-
ing to ELN risk stratification and ECOG performance 
status 0–1 (HR = 0.7, p < 0.001) on OS when analyzing 
the whole cohort. RFS was also significantly influenced 
by age (HR = 1.02, p < 0.001), ELN favorable (HR = 0.6, 

Table 2  Overview of the co-mutational distributions

p-Values indicating parameters that show significant differences are highlighted in bold

Mutations IDHWT IDH1mut IDH2mut p-Value

ASXL1 n/N (%) 46/1187 (3.9) 5/115 (4.3) 14/180 (7.8) .059

BCOR n/N (%) 30/1187 (2.5) 3/115 (2.6) 8/180 (4.4) .342

BCORL1 n/N (%) 26/1187 (2.2) 3/115 (2.6) 7/180 (3.9) .383

CBL n/N (%) 14/1187 (1.2) 2/115 (1.7) 3/180 (1.7) .779

CEBPA biallelic (%) 136/2129 (6.4) 1/195 (0.5) 3/274 (1.1) < .001
CSF3R n/N (%) 13/1187 (1.1) 2/115 (1.7) 2/180 (1.1) .825

CUX1 n/N (%) 22/1187 (1.9) 2/115 (1.7) 2/180 (1.1) .779

DNMT3A n/N (%) 207/1187 (17.4) 30/115 (26.1) 59/180 (32.8) < .001
EZH2 n/N (%) 29/1187 (2.4) 5/115 (4.3) 5/180 (2.8) .472

GATA2 n/N (%) 77/1187 (6.5) 1/115 (0.9) 4/180 (2.2) .005
IKZF1 n/N (%) 19/1187 (1.6) 2/115 (1.7) 1/180 (0.6) .543

JAK2 n/N (%) 10/1187 (0.8) 0/115 (0) 2/180 (1.1) .56

KDM6A n/N (%) 5/1187 (0.4) 2/115 (1.7) 0/180 (0) .089

KIT n/N (%) 54/1187 (4.5) 3/115 (2.6) 2/180 (1.1) .066

KRAS n/N (%) 48/1187 (4) 1/115 (0.9) 3/180 (1.7) .075

NRAS n/N (%) 146/1187 (12.3) 7/115 (6.1) 10/180 (5.6) .006
PHF6 n/N (%) 23/1187 (1.9) 1/115 (0.9) 2/180 (1.1) .553

PTPN11 n/N (%) 53/1187 (4.5) 6/115 (5.2) 6/180 (3.3) .711

RAD21 n/N (%) 37/1187 (3.1) 0/115 (0) 4/180 (2.2) .134

RUNX1 n/N (%) 61/1187 (5.1) 4/115 (3.5) 10/180 (5.6) .702

SMC1A n/N (%) 14/1187 (1.2) 1/115 (0.9) 2/180 (0) .955

SMC3 n/N (%) 8/1187 (0.7) 2/115 (1.7) 1/180 (0.6) .425

STAG2 n/N (%) 34/1187 (2.9) 5/115 (4.3) 12/180 (6.7) .029
TET2 n/N (%) 147/1187 (12.4) 4/115 (3.5) 13/180 (7.2) .003
TP53 n/N (%) 36/1187 (3) 1/115 (0.9) 1/180 (0.6) .072

WT1 n/N (%) 83/1187 (7) 2/115 (1.7) 4/180 (2.2) .006
ZRSR2 n/N (%) 13/1187 (1.1) 0/115 (0) 3/180 (1.7) .399

No co-mutation n/N (%) 42/1187 (3.5) 1/115 (0.9) 0/180 (0) .012
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p < 0.001) and adverse (HR = 1.5, p < 0.001) and ECOG 
performance status 0–1 (HR = 0.8, p = 0.001). Including 
IDH submutational groups into multivariable analysis, 
IDH2 R172 was an independent predictor for better OS 

(HR = 0.5, p = 0.02), which was even more pronounced 
for RFS (HR = 0.4, p < 0.001). IDH1 mutational subclasses 
were associated with a trend toward better OS (R132C, 
HR = 0.86, p = 0.5; R132H, HR = 0.89, p = 0.6), whereas 
IDH2 R140 showed a trend toward inferior OS (HR = 1.1, 
p = 0.35). Similar results were obtained in multivari-
able analysis for RFS where IDH1 R132C showed a trend 
toward better RFS (HR = 0.77, p = 0.19) and IDH2 R140 a 
trend toward worse RFS (HR = 1.2, p = 0.1).

Interaction analysis
For studying the effect of the interaction of alloHCT and 
the respective IDH submutational groups on outcome, 
we performed interaction analysis with the interaction 
of alloHCT and IDHWT AML patients as the reference 
term (Fig. 6a for OS, Fig. 6b for RFS). Interaction analy-
sis demonstrated a trend toward improved outcomes 
for the interaction of alloHCT and IDH1 R132C (OS, 
HR = 0.52, p = 0.15; RFS, HR = 0.64, p = 0.28) and IDH2 
R172 (OS, HR = 0.31, p = 0.1; RFS, HR = 0.43, p = 0.15), 
although they did not reach statistical significance. In 
contrast, interaction analysis of alloHCT and IDH1 
R132H predicted a trend toward worse OS (HR = 1.42, 
p = 0.4). The interaction of alloHCT and IDH1 R132H 
for RFS (HR = 0.96, p = 0.93), as well as the interaction 
of alloHCT and IDH2 R140Q (OS, HR = 0.98, p = 0.94; 
RFS, HR = 1, p = 0.97) predicted similar outcomes like 
the IDHWT cohort that was allografted. Other muta-
tional IDH subgroups in the alloHCT cohort were almost 
at double risk for decreased outcome (OS, HR = 1.99, 
p = 0.18; RFS, HR = 2.11, p = 0.14). In contrast, the effect 
of the interaction of IDHWT and IDH mutational sub-
classes and chemo-consolidation only predicted worse 
outcome, which was mostly pronounced in the terms 
of IDHWT (OS, HR = 1.25, p = 0.006; RFS, HR = 1.61, 
p < 0.001), IDH1 R132H (RFS, HR = 1.68, p = 0.008), 
IDH2 R140Q (OS, HR = 1.43, p = 0.023; RFS, HR = 2.02, 
p < 0.001) and other IDH mutational subgroups (RFS, 
HR = 1.74, p = 0.043). However, the interaction term of 
chemo-consolidation and IDH2 R172K demonstrated 
a trend toward improved outcome (OS, HR = 0.65, 
p = 0.139; RFS, HR = 0.74, p = 0.245).

Discussion
Here, we report that the unfavorable prognostic impact 
of specific IDH mutational subgroups on survival can be 
mitigated by alloHCT as frontline consolidation strat-
egy in a well-defined AML study cohort. To the best of 
our knowledge, this is the largest multicenter analysis 
to determine the prognostic effect of IDH mutations in 
the course of alloHCT, comprising a cohort of 852 AML 
patients transplanted in CR1.

Fig. 3  Overall survival and relapse-free survival according to IDH 
mutation status and allogeneic hematopoietic cell transplantation 
in CR1. Simon–Makuch plots for a overall survival and b relapse-free 
survival of AML patients with IDH wildtype (WT) or mutated (mut) 
IDH treated with allogeneic hematopoietic cell transplantation (blue 
for IDHWT and violet for IDHmut) or conventional consolidation (red for 
IDHWT and green for IDHmut), respectively; p-values were determined 
with Cox model with time-dependent modeling of alloHCT; time in 
months
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Considering the significant biological and molecular 
heterogeneity of AML, the ideal consolidation therapy 
is one of the main foci of scientific and clinical interest. 
Previous studies generated partly controversial results, 
either associating IDHmut with better outcome [8, 13] 
and studies reporting a negative impact on outcome [2, 
14, 16]. More recently, it was shown that IDH mutational 
subgroups associated with different biological features 
have different prognostic impact, suggesting to pro-
vide an explanation for inconsistent results concerning 
prognosis and survival so far [6, 23, 46]. To add a next 
level of complexity, different mutational IDH variants 
are associated with differential co-mutational patterns 

or karyotypes, incorporating prognostic value and even 
potentially defining distinct genomic categories in AML 
[10, 15, 23, 46–49]. As recently shown, considering dif-
ferential co-mutational rates of epigenetic modifiers like 
DNMT3A and TET2 in combination with the hyper-
methylating ability of IDHmut, some suppose IDHmut to 
be predictive of susceptibility to hypomethylating agents 
[50, 51]. These results indicate the need for more clarifi-
cation in the clonal composition, hierarchy and develop-
ment in the concept of disease biology of IDHmut AML, 
as latest data suggest [52].

In accordance with previous reports, nearly 20% of the 
patients analyzed were characterized by IDHmut. Similar 

Fig. 4  Overall survival according to IDH, IDH1 and IDH2 mutational status and allogeneic hematopoietic cell transplantation in CR1. Simon–Makuch 
plots for a overall survival and b relapse-free survival of AML patients with mutated (mut) IDH, IDH1 and IDH2 treated with allogeneic hematopoietic 
cell transplantation (blue) or conventional consolidation (red), respectively; p‐values were determined with Cox model with time‐dependent 
modeling of alloHCT; time in months; ns = not significant

Fig. 5  Overall survival and relapse-free survival according to IDH1 and IDH2 mutational subgroups and allogeneic hematopoietic cell 
transplantation in CR1. Simon–Makuch plots for a and c overall survival and b and d relapse-free survival of AML patients with mutated IDH1 R132C, 
IDH1 R132H, IDH2 R140 and IDH2 R172 mutational subgroups treated with allogeneic hematopoietic cell transplantation (blue) or conventional 
consolidation (red), respectively; p-values were determined with Cox model with time-dependent modeling of alloHCT; time in months; ns = not 
significant

(See figure on next page.)
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Fig. 5  (See legend on previous page.)
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to our recent analysis [6], a significantly higher rate of 
NPM1/IDH co-mutations was seen. In the presence of 
IDHmut, our present analysis also revealed significant 
differential co-mutational distributions compared with 
IDHWT patients. These patterns, as well as their prog-
nostic impact, have to be considered when analyzing 
outcomes in AML patients, as our study did not include 
these co-mutational aspects. Also in line with previ-
ous data, our IDHmut cohort was characterized by sig-
nificantly older age, as well as lower LDH concentration 
(especially for IDH2mut patients) and a higher count of 
peripheral blasts (pronounced in IDH1mut patients) and 
bone marrow blasts [48] .

Most importantly, our present data is demonstrating 
a beneficial effect of alloHCT for IDHmut AML patients, 
which is in line with recently published data of Duch-
mann et  al. who demonstrated superior OS for IDHmut 
AML patients treated with alloHCT in CR1 [46], but 
also contrary to previous studies associating IDH muta-
tions with higher rates of relapse after alloHCT [30]. 
IDHmut patients showed a trend toward prolonged OS 
and improved RFS compared with their wildtype coun-
terparts when undergoing alloHCT and shorter OS 
and RFS compared with IDHWT patients when receiv-
ing chemo-consolidation after CR1. Focusing on IDH1 
mutations, R132C was characterized by an improved OS 
and RFS if transplanted in CR1, an effect which could 
not be shown for R132H. This improvement in survival 
was shown previously only regarding OS and without 
discriminating between R132 variants [46]. Whether 

the difference in prognosis implicated by R132H is due 
to increased 2-HG levels causing blockage of differen-
tiation in hematopoiesis needs further investigation [53]. 
Interestingly, R132C patients had the worst 5-year OS 
compared with the other three analyzed subtypes when 
consolidated with chemotherapy after CR1 in our study, 
but the highest 5-year OS of all IDH subgroups when 
treated with alloHCT in CR1, begging the question of dif-
ferential susceptibility to allografting among IDH muta-
tional subgroups. Furthermore, when incorporating our 
recently published data including co-mutational pat-
terns of IDHmut patients into our current analysis, we did 
not see a clear correlation between improved OS and a 
high frequency of NPM1 co-mutations, as IDH1 R132C 
was the subgroup characterized by the lowest rate of co-
occurring NPM1 mutations among all IDH1mut patients 
(IDH1 R132C 24.2% vs. IDH1 R132H 71% vs. IDH1 other 
64.2%) and was also less likely to harbor NPM1 mutations 
compared to IDHWT patients (28.4%) [6]. The same trend 
is seen for FLT3-ITD, another mutation known to benefit 
from alloHCT, with IDH1 R132C characterized by the 
lowest rate of co-occurring FLT3-ITD mutations [6]. On 
the other hand, IDH1 R132H, which is associated with 
the highest rate of co-occurring NPM1 mutations (71% of 
patients) according to our recently published data, dem-
onstrates the worst 5-year OS when undergoing trans-
plantation. These retrospective data suggest that IDH1 
R132C could be a clear profiteer from alloHCT, as our 
recent analysis also revealed a trend toward reduced OS 
in patients carrying IDH1 variant R132C after intensive 

Fig. 6  Multivariable Cox model with single interaction terms. Single interaction terms for a overall survival and b relapse-free survival for IDH 
submutational groups IDH1 R132C, IDH1 R132H, IDH2 R140Q and IDH2 R172K, other IDH mutational subgroups (other) or IDH wildtype (wt) with 
either allogeneic hematopoietic cell transplantation (alloHCT) or chemo-consolidation (noHCT); p-values and hazard ratios were determined with 
Cox model
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induction chemotherapy, and that there could be a ben-
eficial aspect of alloHCT alone independent of NPM1 or 
FLT3-ITD mutation status, providing a chance to over-
come the worse prognosis for patients lacking “favorable” 
mutations like NPM1. However, low patient numbers 
in these subgroups of our analysis need to be taken into 
account and further validation is needed.

Patients with IDH2 subtype R140 had no differential 
OS probability, but significantly prolonged RFS after 
alloHCT in CR1. In contrast, IDH2 R172 was character-
ized by significant higher OS, as well as higher RFS in 
the alloHCT cohort. These data suggest that allografting 
AML patients with an IDH2 R172 mutation as consolida-
tion strategy is a considerable option for these patients. 
Recently, Linch et  al. also reported improved survival 
of AML patients carrying IDH2 R172 variant compared 
with a historical IDH2 R172 cohort presenting with poor 
prognosis, relating increased use of alloHCT as consoli-
dation after CR1 with longer OS in the later cohort, as 
induction strategy was almost unchanged and patients of 
the later cohort were even significantly older [54]. Addi-
tionally, high levels of 2-HG as an oncometabolite and 
prognostic indicator are paralleled by unfavorable out-
come and R172 has been shown to induce higher levels 
of 2-HG than R140 [24, 55–57]. However, our present 
data reveal an independent beneficial prognostic impact 
on survival of IDH2 R172. Again, although our IDH2 
cohort was bigger and provided more statistical power, 
small patient numbers and underlying co-mutational 
patterns have to be considered when interpreting these 
data, although IDH2 R172 seems to define a distinct 
genetic AML subgroup, being mutually exclusive from 
class-defining genetic aberrations like NPM1 mutations 
as reported previously [6, 23, 49]. Duchmann and col-
leagues recently attributed co-occurring NPM1 muta-
tions in IDH1 and IDH2 R140-mutated patients as the 
main prognostic component for improved survival [46]. 
However, these results were not analyzed in patients 
undergoing alloHCT or only in a small transplant cohort, 
respectively. In our non-alloHCT cohort, we could 
evaluate corresponding results when incorporating our 
recent results on IDH mutations and co-mutations [6]. 
Briefly, IDH subtypes with the highest 5-year OS in our 
present analysis (e.g., IDH1 R132H with 51% and IDH2 
R140 with 46%) were also the subgroups with the high-
est frequencies of co-occurring NPM1 mutations (IDH1 
R132H with 71% and IDH2 R140 with 49% of patients 
carrying additional NPM1 mutations). Along with these 
results, the IDH subgroup with a lower rate NPM1 muta-
tion (IDH1 R132C with 24%) had the worst 5-year OS in 
our non-alloHCT cohort (40%). Again, IDH2 R172 was 
characterized by improved prognosis (5-year OS of 68%) 
independent of NPM1 mutations (with 2% of patients 

carrying NPM1) [6]. Hence, our results are in line with 
the data Duchmann et  al., with an implied association 
that seems to arise between improved survival and NPM1 
mutation status.

In summary, a better survival for AML patients with 
mutated IDH undergoing alloHCT in CR1 could be 
illustrated, with modest to statistically significant differ-
ences depending on the underlying IDH1/2 mutational 
variant. The improved prognostic effect of alloHCT was 
mostly pronounced in the mutational subgroups IDH1 
R132C and IDH2 R172. However, limitations of this 
retrospective analysis include the lack of information 
about donor availability, patients’ performance status 
after induction therapy and small patient numbers for 
subgroup analysis. Still, the compiled results highlight 
the urgent need for increased knowledge about disease 
biology and the relevance of prognostic and predictive 
markers in order to apply individually adjusted treat-
ment decisions and optimized consolidation strategies 
in AML. Ongoing studies are currently investigating 
the implementation of IDH inhibitors in the front-
line setting of induction therapy (NCT03839771 and 
NCT04493164), which will add valuable data for the 
re-evaluation of the role of alloHCT in IDHmut patients 
when pre-treated with IDH inhibitors during induc-
tion, consolidation or as a maintenance therapy after 
alloHCT.

Conclusion
On the basis of our results, it is arguable that defined IDH 
mutational subgroups introduce predictive and prognos-
tic potential in different therapeutic settings. Further-
more, the differential responsiveness and “alloreactivity” 
of single IDH subclasses to alloHCT in CR1 should ini-
tiate further prospective investigations to validate these 
findings, especially in respect of co-mutational patterns 
influencing the predictive value of IDH mutations, offer-
ing the chance to add information for refined AML risk 
classifications to improve survival for AML patients.
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