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Tumor organoids: applications in cancer 
modeling and potentials in precision medicine
Hanxiao Xu1†, Dechao Jiao2†, Aiguo Liu1* and Kongming Wu2,3*   

Abstract 

Cancer is a top-ranked life-threatening disease with intratumor heterogeneity. Tumor heterogeneity is associated 
with metastasis, relapse, and therapy resistance. These factors contribute to treatment failure and an unfavorable 
prognosis. Personalized tumor models faithfully capturing the tumor heterogeneity of individual patients are urgently 
needed for precision medicine. Advances in stem cell culture have given rise to powerful organoid technology for the 
generation of in vitro three-dimensional tissues that have been shown to more accurately recapitulate the structures, 
specific functions, molecular characteristics, genomic alterations, expression profiles, and tumor microenvironment 
of primary tumors. Tumoroids in vitro serve as an important component of the pipeline for the discovery of potential 
therapeutic targets and the identification of novel compounds. In this review, we will summarize recent advances in 
tumoroid cultures as an excellent tool for accurate cancer modeling. Additionally, vascularization and immune micro-
environment modeling based on organoid technology will also be described. Furthermore, we will summarize the 
great potential of tumor organoids in predicting the therapeutic response, investigating resistance-related mecha-
nisms, optimizing treatment strategies, and exploring potential therapies. In addition, the bottlenecks and challenges 
of current tumoroids will also be discussed in this review.

Keywords: Organoid, Patient-derived xenografts, Cancer, Tumor microenvironment, Therapy response prediction, 
Drug discovery
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Background
Preclinical tumor models serve as a prominent platform 
for mechanistic research and testing new drugs. Over the 
past few decades, clinical trials have witnessed the most 
failures of novel therapies, despite great efforts in target 
validation and drug optimization based on conventional 
preclinical models [1], including cell culture, cell-line or 
patient-derived xenograft models, and murine or nonmu-
rine animal models [2].

Cancer cells, either growing in culture medium or as 
xenografts, do not accurately recapitulate the complex-
ity of human cancers due to the deficiency of tumor-ini-
tiating cells and the absence of a human-specific tumor 
microenvironment (TME) and extracellular matrix 
(ECM) [3], as well as the genetic variance resulting from 
long-term maintenance and passages in  vitro [4]. For 
patient-derived xenograft (PDX) models, sample accessi-
bility, logistic and economic issues, and ethical concerns 
hamper their broad and extensive application in basic 
research and personalized medicine [5].

Organoids are in  vitro tissues that originate from 
human stem cells, organ-specific progenitor cells, or even 
disassociated tumor tissues and are cultured in proper 
ECM-based medium with relatively high success rates. 
Tumoroids mimic the primary tissues in both archi-
tecture and function and retain the histopathological 
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features, genetic profile, mutational landscape, and even 
responses to therapy (Fig.  1A) [6, 7]. Thus, organoids 
serve as excellent tools for investigating tumorigenesis 
and cancer progression in  vitro and exhibit enormous 
potential for translational studies [6–15]. To date, orga-
noids derived from multiple human tumor types have 
been successfully established [13, 16–19]. Compared with 
PDX models, organoid establishment requires less time 
and less tissue, and tumoroids stably maintain the key 
characteristics of primary tumors even after long-term 
passaging [13]. Furthermore, in  vitro gene modification 
is much easier than in vivo, as exemplified by genetically 

manipulated organoids with genetic knockouts of the 
tumor suppressors Trp53 and Stag2 via CRISPR/Cas9 
technology [18]. In this review, we summarize and out-
line recent progress in organoid technology in preclinical 
and clinical cancer research.

Organoid culture system
The processes used to generate distinct patient-derived 
organoids (PDOs) are different to varying degrees but 
generally share several main steps. Human tumor tissues 
containing pluripotent stem cells (PSCs), adult stem cells, 
or cancer stem cells are occasionally first disassociated 
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Fig. 1 Main steps of PDO generation and main applications of PDOs. Human cancer tissues containing cancer cells, adult stem cells, pluripotent 
stem cells, or cancer stem cells are occasionally first disassociated into very small pieces, cell clusters, or single cells using mechanical and chemical 
methods and cultured under proper 3D conditions in hydrogels with ECM components (A). Tumoroids mimic the primary tissues in terms of 
histopathological features, genetic profiles, mutational landscape, and even responses to therapy, and tumoroid biobanks can be established (B). 
3D, three-dimensional; ECM, extracellular matrix; PDO, patient-derived organoid
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into very small pieces, cell clusters, or single cells using 
mechanical and chemical methods and then cultivated 
under proper culture conditions in hydrogels with ECM 
components, among which Matrigel is commonly uti-
lized (Fig. 1B). These culture systems maintain cell prolif-
eration and differentiation, including stem cells [20], and 
these cells self-organize into functional units or specific 
tissue architectures that contain both differentiated cells 
and stem cells [20, 21].

Sample processing methods mainly include mechani-
cal disassociation and chemical digestion. Yawei Hu et al. 
reported an adapted mechanical processing method for 
cancer tissues that promotes the efficient generation of 
lung cancer organoids (LCOs) in 3  days [22]. This sam-
ple processing method reached a 79% success rate, which 
was further enhanced by removing tumor tissues exhib-
iting serious necrosis, fibrosis, and carbon deposition 
[22]. Compared with conventional enzyme digestions, 
mechanical processes generated more tumoroids, possi-
bly due to the maintenance of intercellular connections 
within cell clusters during mechanical processing [22]. 
In contrast, enzyme digestion increased the amount of 
normal lung tissue-derived spheroids obtained, probably 
because enzyme treatment contributed to the release of 
epithelial cells from normal lung tissues [22].

Some growth factors and inhibitors are required in 
the culture medium (Table 1). Different combinations of 
growth factors and inhibitors in the medium contribute 
to the generation of distinct component lineages in orga-
noids [23]. For instance, a recent study revealed that the 
removal of epidermal growth factor (EGF) contributes 
to a relatively higher proportion of mature luminal cells 
with downregulation of mucin-1 and galectin-1, as well 
as a lower proportion of basal cells with upregulation of 
cluster of differentiation 90 (CD90) [23]. In addition, the 
elimination of heregulin-β1, p38 mitogen-activated pro-
tein kinase (MAPK) inhibitor, or fibroblast growth factor 
7 (FGF7) and FGF10 also exerts significant effects on the 
distribution of mammary lineages, such as mature lumi-
nal cells and luminal progenitor cells. In addition, B27 
removal contributes to reducing the number of basal cells 
expressing CD73/CD90 [23].

The outgrowth of normal tissues, which reduces the 
purity of cancer organoids, is a common and challenging 
issue for increasing the purity of tumoroids [24], as exem-
plified by the study conducted by Krijn K Dijkstra et al., 
showing that the success rate of pure non-small cell lung 
cancer (NSCLC) organoid establishment was only 17% 
[25]. Minimizing the growth of normal tissues during 
the establishment and maintenance of tumor organoids 
is important and challenging. Culture medium compo-
nents exert different effects on the expansion of normal 
and cancer tissues [26]. Only complete medium supports 

the long-term growth of normal gastric organoids [26]. 
For gastric cancer organoids (GCO), the absence of Wnt, 
A38-01, and FGF10 does not affect the phenotypes [26]. 
According to the detailed protocol reported by Kim 
M and colleagues, 30% Wnt3A-conditioned medium, 
Noggin, and A83-01 were added to normal bronchial 
organoids compared with the culture medium of LCOs 
[16]. Thus, in addition to a more accurate extraction of 
tissue materials and an appropriate sample process-
ing approach, eliminating medium components that are 
essential for normal organoid growth but do not affect 
tumoroid growth might be a possible candidate solution 
for this issue.

Human tumor modeling
Lung cancer
Lung cancer (LC) represents the most common tumor 
type and causes most cancer-related mortality worldwide 
[27]. To date, accumulating evidence has revealed the 
feasibility and superiority of LCOs [16, 22, 24, 25, 28–44]. 
Kim M et  al. reported the successful establishment of 
organoids representative of five LC subtypes [16]. These 
LCOs sufficiently retained the morphological and histo-
logical features and the genomic variations of the corre-
sponding primary LC during long-term passage in vitro 
[16]. For instance, acinar or large glandular structures 
were observed in lung adenocarcinoma organoids along 
with the expression of tumor markers, including napsin-
A and cytokeratin 7 (CK7) [16]. Squamous cell LCOs 
displayed some histologic features of this tumor subtype, 
such as different cell borders, cytoplasmic keratinization, 
and high expression of some squamous cell carcinoma-
specific markers (p63 and CK5/6) [16]. At the genomic 
level, a high level of consistency was observed in single-
nucleotide polymorphism profiles and somatic non-
synonymous mutations among 44 cancer-related genes 
between LCOs and matched original cancer tissues [16]. 
Driver gene mutations, including TP53 and epidermal 
growth factor receptor (EGFR), in their original tumors 
were also recapitulated in LCOs [16].

Much effort has been exerted to model tumorigen-
esis and progression, as well as to further elucidate the 
molecular mechanisms using tumor organoids [29, 30]. 
Dost AFM et  al. utilized organoid cultures to investi-
gate the early molecular events occurring in lung epi-
thelial cells following oncogenic KRAS activation [38]. 
Decreased expression of mature lineage identity genes 
and upregulation of developmental and progenitor genes 
were detected in alveolar epithelial progenitor cells har-
boring oncogenic KRAS [38]. Another study based on 
tumor organoids and genetically engineered mouse mod-
els showed that phase separation of EML4-ALK signaling 
triggered LC formation and malignant transformation 
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[29]. In addition, human-induced PSC (iPSC)-derived 
lung organoids with human epidermal growth receptor 
2 (HER2) overexpression contained atypical adenoma-
tous hyperplasia-like structures with a higher degree of 
proliferation and morphological abnormalities, as well as 
the activation of oncogenic signaling pathways, includ-
ing RAS/RAF/MAPK and phosphatidylinositol 3-kinase 
(PI3K)/protein kinase B (AKT)/mammalian target of 
rapamycin (mTOR) signaling [30]. This phenomenon 
indicates that HER2 also drives the carcinogenesis of lung 
adenocarcinoma. In addition, cyclin-dependent kinase 
1 (CDK1), CCNB2, and CDC25A also exert tumor-pro-
moting effects on the tumorigenesis and development of 
lung adenocarcinoma organoids [31].

Breast cancer
Breast cancer (BC) represents the most common malig-
nant disease in females and displays high heterogene-
ity [45, 46]. The differential expression profile of pivotal 
signaling pathways and molecules, including estrogen 
receptor (ER), progesterone receptor (PR), and HER2, 
plays important roles in cancer biological behaviors, 
affects the choices of therapeutic intervention, and is 
associated with clinical outcomes [47, 48]. To date, a 
large repository of research has reported the successful 
development of breast cancer organoids (BCOs) [13, 23, 
49–63]. In a previous study conducted by Sachs N et al., 
organoids were generated from primary and metastatic 
breast cancer tissues and accurately reproduced the his-
topathology, hormone receptor status, HER2 status, and 
DNA copy number variations [13]. Fang G et al. reported 
the high-throughput establishment of mouse mammary 
tumoroids using nonadhesive alginate instead of base-
ment membrane extract (BME) through microfluidic 
droplet technology [64]. These mammary tumoroids con-
tained luminal and solid-like architectures and showed 
similar cellular phenotypes and lineages to the original 
tumors [64]. Rosenbluth JM and colleagues generated 79 
organoids derived from normal breast tissues and high-
risk tissues from patients with breast carcinoma [23]. 
These high-risk tumoroids reproduced the propagation 
of BRCA1 heterozygosity-related luminal progenitor cells 
[23].

Integration of CRISPR/Cas9 technology and human 
BCOs has also been conducted to investigate the onset 
of BC [51]. Genetic knockout of tumor suppressor genes, 
including P53, phosphate and tension homology deleted 
on chromosome ten, RB1, and neurofibromatosis type-1, 
endowed organoids with a long-term culture capacity 
[51]. Another study revealed that SOX4 promotes the 
maintenance of undifferentiated and proliferative states 
in mammary tumoroids [62]. Compared with SOX4-
proficient tumoroids, tumoroids with SOX4 knockout 

contained more differentiated cells with luminal or basal 
gene expression patterns and lower levels of cell cycle 
genes and showed an impaired capacity for tumor growth 
and metastatic outgrowth [62].

Gastric cancer
Gastric cancer is a common malignancy worldwide with 
marked molecular heterogeneity and is the second lead-
ing cause of cancer-related deaths [65, 66]. Many stud-
ies have reported the successful generation of GCOs 
[12, 26, 67–80]. Seidlitz T documented the feasibility 
of establishing a gastric cancer organoid biobank from 
human gastric or esophagogastric adenocarcinoma 
and mouse gastric cancer tissues [26]. These organoids 
retained the divergent growth behavior and morphologi-
cal phenotypes, as well as histological characteristics of 
the respective parent tissues to a great extent [26]. The 
morphological and histological characteristics remained 
unchanged even after long-term culture for 1 year [26]. 
For instance, corpus carcinoma-derived organoids har-
bored a cystic structure containing a thickened epithe-
lium, and antrum carcinoma-derived organoids did not 
contain a lumen [26]. The expression of distinct gastric 
cancer markers, including CK7, cadherin-17, and carci-
noembryonic antigen, and the periodic acid–Schiff stain-
ing pattern in original cancer tissues were also faithfully 
and permanently maintained in gastric tumoroids [26]. 
In addition, a mutational spectrum was revealed among 
these tumoroids using whole-genome sequencing that 
was consistent with the previously reported genomic 
stable (GS) subtype, microsatellite instable (MSI) sub-
type, and chromosomal instable (CIN) subtype of gastric 
cancer [26]. In another study, gastric tumoroids, includ-
ing the subtypes of EBV, MSI, CIN, and GS, as well as 
CLDN18-ARHGAP6 or CTNND1-ARHGAP26 fusions or 
mutations in RHOA, also faithfully recapitulated archi-
tectural and regional heterogeneity, as well as the mor-
phology and transcriptomic and genomic profiles, even 
after long-term culture [68].

Liver cancer
Liver cancer, which is classified into hepatocellular car-
cinoma (HCC), intrahepatic cholangiocarcinoma, and 
mixed type, is among the most common digestive tract 
tumors with an increased incidence, unfavorable clinical 
outcomes, and high mortality [81]. Liver cancer orga-
noids have been generated in an increasing number of 
studies to better model this tumor type [82–92]. Accord-
ing to one previous study, liver cancer organoids derived 
from needle biopsy tissues faithfully model the histo-
pathological features of matched patient tumors even 
after long-term culture for up to 1 year [84], including the 
growth pattern, differentiation grade, and the expression 
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patterns of the tumor marker alpha-fetoprotein, glypican 
3, glutamine synthetase, and heat shock protein 70 [84].

Fibroblast growth factor receptor 2 (FGFR2) fusion 
proteins were reported to promote oncogenic transfor-
mation of mouse liver organoids to cholangiocarcinoma 
[93]. In another study, functional human HCC organoids 
were generated from Huh7 cells, human iPSC-derived 
mesenchymal cells (MCs), and human iPSC-derived 
endothelial cells (ECs) [94]. The combination of human 
iPSC-ECs and iPSC-MCs drove HCC growth, and the 
immune response was important for slowing tumor 
growth at an early stage [94]. Sequential knockout and 
knock-in of driver mutations using CRISPR–Cas9 tech-
nology were conducted to generate genetically modified 
liver cancer organoids as a method to further investigate 
tumor pathogenesis [95]. These observations indicate the 
great potential of liver cancer organoids in tumor mod-
eling and subsequently providing a better understanding 
of liver cancer biology.

Pancreatic cancer
Pancreatic cancer represents one of the most lethal solid 
tumor types; pancreatic ductal adenocarcinoma accounts 
for 90% of these tumors, and less than 5% are pancre-
atic neuroendocrine neoplasms [96, 97]. Pancreatic can-
cer organoids have been generated to investigate tumor 
biology and promote clinical applications [96, 98–103]. 
PDOs derived from primary pancreatic ductal adeno-
carcinoma (PDAC) and matched liver metastases were 
generated [104]. A single-cell analysis was subsequently 
performed using these tumoroids. These organoids con-
tained both “classical” cells and “basal-like” cells and 
showed two different cell states of a cycling progenitor 
cell and a differentiated secretory connected through a 
differentiation hierarchy [104]. A functional hierarchy 
of PDAC cell states was correlated with transcriptional 
patterns in tumor subtypes, supporting the potential 
application of organoids as a coclinical model in studies 
of cancer heterogeneity [104, 105]. In addition, pancre-
atic cancer PDX-derived organoids were shown to retain 
complex glycosylation variations [4] that contribute to 
cancer development by dysregulating protein expression 
levels, stability, and localization [106]. KRAS was shown 
to regulate epithelium–macrophage cross talk and pro-
mote pancreatic carcinogenesis in a pancreatic organoid 
model [103]. Coculture models suggested that hetero-
spheroids consisting of primary human PDAC cells and 
pancreatic stellate cells were more resistant to gemcit-
abine than PDAC-only spheroids, and a further mecha-
nistic study showed that deoxycytidine secreted from 
pancreatic stellate cells mediated PDAC resistance to 
gemcitabine [105].

Colorectal cancer
Accumulating studies have employed colorectal cancer 
(CRC) organoids to investigate tumor development [90, 
107–113]. Organoids derived from metastatic CRC and 
metastatic gastroesophageal cancer show great similarity 
with the respective biopsies in terms of morphology, the 
mutational spectrum, genes with an altered copy number, 
and expression patterns of common clinical diagnosis 
markers, including caudal-related homeobox  2 (CDX2) 
and CK7 [12].

Ganesh K and colleagues have also developed a biobank 
of 65 PDOs of rectal cancer derived from patients with 
primary, metastatic, or recurrent rectal cancer and 
achieved a success rate of 77% at a whole level [107]. 
These tumoroids have been generated even from min-
ute amounts of tumor tissues obtained from endoscopic 
biopsies [107]. Consistently, rectal cancer organoids 
faithfully recapitulate the molecular and histopathologi-
cal characteristics of the matched primary tumors [107]. 
For instance, some markers expressed in these tumoroids 
reflect the matched origin parent tumors, which was ver-
ified by the detection of CDX2, high expression of E-cad-
herin, β-catenin staining patterns in the cytoplasm and 
nucleus, or goblet cells with mucin-2 expression, similar 
to the primary tumors [107]. Additionally, these tumor-
oids maintained specific glandular features in terms of 
architecture (e.g., cord- and nest-like growth patterns, 
nuclear stratification, and pooled mucin production) and 
subtle cytologic features (e.g., cytoplasmic clearing and 
cytoplasmic eosinophilia) [107]. In addition, tumoroids 
also retain the mutational fingerprint of the matched pri-
mary tumors with approximately 92% concordance [107].

Another study documented the feasibility of tumoroids 
in the accurate recapitulation of KRAS-mutant metastatic 
rectal cancer with microsatellite stability after hepatic 
resection and treatment with neoadjuvant combina-
tion chemotherapies of 5-FU, leucovorin, and oxaliplatin 
[114]. The histopathological differentiation phenotypes of 
these PDOs were consistent with liver metastases [114]. 
Collectively, colorectal tumoroids accurately model 
native tumors and facilitate mechanistic research on this 
cancer type.

Renal cancer
Renal cell carcinoma (RCC) is a common urinary system 
malignancy associated with high cancer-related mortal-
ity [115, 116]. Many studies have reported the successful 
generation of renal cancer organoids for accurate cancer 
modeling [117–119]. Patient RCC tissue and matched 
tumoroids shared high similarity in histopathological 
characteristics, including chromophobe RCC and sarco-
matoid variant renal carcinoma [117]. In addition, these 
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tumoroids retain some genetic features of native tumors, 
as exemplified by consistency in numerous gene muta-
tions, such as mutations in von Hippel–Lindau and poly-
bromo 1 [117]. Using organoids derived from patients 
with RCC, Hamdan F et  al. reported that an oncolytic 
adenovirus secreting the cross-hybrid Fc-fusion peptide 
that binds to programmed death-ligand 1 (PD-L1) and 
activates the Fc-effector significantly increases tumor 
killing and minimizes toxicity compared with the PD-L1 
inhibitor atezolizumab, IgG1-PDL1 and IgA-PDL1 [119].

Bladder cancer
Bladder cancer is a common urothelial carcinoma 
that seriously affects the survival and quality of life of 
patients. Much effort has been made to develop an effi-
cient long-term culture system for bladder cancer orga-
noids [18, 120]. According to a previous study conducted 
by Mullenders J and colleagues, bladder cancer organoids 
are successfully established from surgically resected 
tumors and biopsies with approximately 50% efficiency 
and are maintained and passaged long term [18]. Blad-
der cancer organoids faithfully and accurately recapitu-
late the respective primary tumors in terms of histology 
and function [18]. Organoids encompass both luminal 
and basal bladder cancer subtypes and retain common 
cancer-related mutations, such as TP53 and FGFR3 
[18]. Consistent with the primary tumors, organoids 
display distinct morphological structures. For instance, 
organoids exhibit either solid or lumen-containing and 
smooth rounded, elongated structures or a very irregular 
morphology [18].

In another study by Lee SH et  al., bladder cancer 
organoids were developed from transurethral resected 
samples containing both low-grade nonmuscle inva-
sive tumor and high-grade muscle invasive cancer with 
approximately 70% efficiency [121]. Consistently, orga-
noids retained the tumor heterogeneity and mutational 
spectrum of matched primary cancer. Furthermore, these 
tumoroids displayed a series of genomic alterations that 
were consistent with cancer evolution in culture [118, 
121].

Prostate cancer
Prostate cancer (PC) represents one of the most com-
mon cancer types in males and has an increasing inci-
dence worldwide; it also ranks among the highest level 
of cancer-related mortality in males [122]. Many stud-
ies have employed organoids to investigate tumor biol-
ogy and promote tumor translational medicine [19, 
123–133]. Heninger E and colleagues established PDOs 
from locally advanced PC [134]. According to orthogo-
nal analyses, these organoids retained the complexity 
of the TME observed in multifocal PC [134]. According 

to an orthogonal flow cytometry analysis, PC organoids 
retained a distinct subpopulation of epithelial cells that 
conserved the expression of AR-related molecules [134]. 
Based on genetically normal mouse prostate organoids, 
SPOP mutation contributes to accessibility and AR bind-
ing patterns that are similar to those of native primary 
tumors [135].

Modeling tumor vascularization
A normal vasculature contains ECs, vascular smooth 
muscle cells, pericytes, and ECM [136, 137]. Angiogen-
esis plays pivotal roles in tumor growth and metastasis by 
delivering the required nutrients for growth and acting 
as a passageway for tumor cells to escape to other habi-
tats [138]. Recently, vascular endothelial growth factor 
receptor (VEGFR)-associated targeted agents have been 
proven to be effective antitumor therapies against mul-
tiple solid tumors [139]. Much effort has been made to 
recapitulate the tumor vasculature in organoid cultures 
for a better understanding of angiogenic signaling path-
ways and for developing effective treatment strategies 
[136, 140]. Implantation of organoids into highly vascu-
larized tissues is a commonly applied approach to orga-
noid vascularization [141] (Fig.  2). After organoids are 
engrafted in the vasculature-rich animal tissue, the host 
vasculature infiltrates the organoids and connects the 
host animal model to the transplanted organoid model 
[142]. Following the implantation of human brain orga-
noids into adult mouse brains, extensive infiltration of the 
host vasculature was observed [143]. Another approach 
to vascularize organoids is combining cocultures of 
mixed cells through gene editing or using a microfluidic 
platform.

Philipp Wörsdörfer et  al. reported that mesodermal 
progenitor cell-derived tumoroids exhibit typical features 
of a blood vessel, such as luminal caveolae, EC junctions, 
and basement membrane [142]. According to another 
study, the hepatocellular carcinoma organoid system 
expressed markers of epithelial–mesenchymal transition, 
neoangiogenesis, and inflammation at relatively high lev-
els, including vimentin, transforming growth factor beta 
(TGF-β), VEGFR2, hypoxia-inducible factor 1α, VEGF, 
CXCR4, and tumor necrosis factor α, when cocultured 
with ECs and fibroblasts [144].

When cultured adjacent with the vascular network, 
PDMS-based patient-derived BCOs containing ECs and 
immune cells display a significant angiogenic response 
for 3  weeks [145]. When cultured near cancer-asso-
ciated fibroblasts (CAFs), these organoids show sig-
nificantly increased expression of VEGF-A and TGF-β 
[145]. In another study, vascularized breast tumoroids 
were also generated in collagen- and hyaluronic acid-
enriched ECM, which contained MCF-7 cells and human 



Page 9 of 20Xu et al. Journal of Hematology & Oncology           (2022) 15:58  

fibroblasts [146]. Vascularized tumoroids were also suc-
cessfully constructed by coculturing tumor cells with 
EC-derived endothelial colony-forming cells and lung 
fibroblasts [147]. Based on compartmentalized micro-
fluidic chips, VEGF and hypoxia gradients induced and 
guided vascularization in the coculture system of orga-
noids and endothelial cells [141, 148]. Generally, cocul-
ture strategies promote organoid vascularization.

Modeling of tumor–immune interactions
Cancer immunotherapy brings new hope for cancer 
treatment [149–152]. The tumor immune microenviron-
ment affects tumor growth and progression, as well as 
cancer responses to immunotherapy [153, 154]. Enor-
mous efforts have been made to improve current tech-
nological platforms for better modeling immune system 
function in tumors [155–160]. The coculture of tumor-
oids and immune cells represents a commonly used and 

Organoids

Transplantation into vascular-rich animal tissues

Organoids

Vascularization

Host vascular network 
     invades organoids

Operation

Vascularized organoids

Matrigel Culture medium

+
Microfluidic platform

Tumor cells Endothelial cells

3D co-cultures

Fig. 2 Workflow of organoid vascularization. Implantation of tumoroids into highly vascularized tissues in animals is an effective approach for 
organoid vascularization. After organoids are engrafted in vasculature-rich mouse tissue, the host vasculature infiltrates the organoids. Another 
approach to generate vascularized organoids is combining the coculture of mixed cells or microfluidic platforms
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effective approach (Fig.  3). Currently, two approaches 
to cocultures of organoids and immune cells are used, 
including maintenance and expansion of native immune 
cells in tumoroids and addition of immune cells to orga-
noid culture [161]. However, a robust anticancer immune 

response requires the interaction between tumor tissue-
infiltrated innate immune cells and acquired immune 
cells, such as neutrophils, MDSCs, macrophages, NK 
cells, DCs, and T cells. In addition, various cytokines are 
also involved in this process. These cells and cytokines 

Peripheral blood

  Maintenance and expansion of 
native immune cells in tumoroids

  Addition of immune cells 
       to organoid culture

Culture mediumCollagen

Mince

Disassociated tumor fragments

Inner dish

Air-liquid interface culture

Tumor tissue-derived cell suspension

Matrigel Culture medium

Immunotherapy response testing

Tumor organoids

Matrigel Culture medium

NK cells T cells B cells

Cancer-associated fibroblast

Tumor cells

Immunotherapy

Macrophage

Dendritic cell

   Modeling of 
tumor-immune 
    interaction

Patient or mouse-derived 
          tumor tissues

Fig. 3 Modeling the immune microenvironment in a coculture system of tumoroids and immune cells. Two approaches have been developed 
to coculturing organoids and immune cells: maintenance and expansion of native immune cells in tumoroids and addition of immune cells to 
organoid culture. Immune cells can be obtained from the ALI culture system. Tumoroids are embedded in a collagen gel with one side exposed 
to air and the other side in contact with the liquid culture medium. Cocultures of tumoroids and immune cells may promote the prediction and 
evaluation of individual tumor responses to clinically used immunotherapies
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work together to determine the immune response and 
immunotherapeutic effect. At present, mimicking the 
real tumor environment with an in vitro system is nearly 
impossible [162–165].

Cocultures of gastric cancer organoids and immune 
cells were utilized to study the immunosuppressive 
function of myeloid-derived suppressor cells (MDSCs), 
revealing that PD-L1 expression is regulated by the 
mTOR signaling pathway in gastric cancer [155]. Further-
more, enhanced tumor growth and impaired prolifera-
tion of cytotoxic T cells were observed in cocultures of 
pancreatic cancer organoids with MDSCs [156]. In addi-
tion, 3D cocultures of pancreatic cancer cells with mono-
cytes and CAFs were also established, in which increased 
secretion of immunosuppressive cytokines was detected, 
and these cytokines inhibited activation and prolifera-
tion in vitro [157]. Dijkstra KK and colleagues cocultured 
autologous cancer organoids and peripheral blood lym-
phocytes [158]. These cocultures have been shown to be 
capable of enriching tumor-reactive T cells from patient-
derived peripheral blood [158]. Tumor-reactive T cells 
contributed to a reduced organoid size and widespread 
apoptosis [158].

The air–liquid interface (ALI) retains endogenous stro-
mal and immune components [159, 166]. In the ALI cul-
ture system, tumoroids are encapsulated in a collagen gel 
with one side exposed to air and the other side in contact 
with the liquid culture medium [161]. Based on the ALI 
culture method, LCOs and CRC organoids retain native 
CD45 + immune cells for more than 10 days but show a 
remarkable reduction in the CD3 + cell population [166]. 
Another study reported a modified ALI method to model 
the immune microenvironment of diverse malignan-
cies [159]. This method enabled the presence and main-
tenance of immune cells, including NK cells, T cells, B 
cells, and macrophages, even during long-term culture 
for several months [159]. Generally, refined organoid 
technology through coculture systems may be a prom-
ising in  vitro platform for modeling the tumor immune 
environment.

Exploration of drug resistance‑related mechanisms
Tumoroids reliably retain the pivotal characteristics 
of primary parent tumors, as described above [167], 
which facilitates the investigation of therapy resist-
ance mechanisms. The study by Boos SL underlined the 
capacity of KRAS wild-type CRC organoids to simulate 
and reproduce gradual chemotherapy tolerance to the 
combination of irinotecan and EGFR inhibition in vitro 
[168]. In GCOs resistant to oxaliplatin, the presence of 
myoferlin was shown to be closely correlated with the 
acquisition of oxaliplatin resistance [80]. In another 
study, atypical cyclin P expression was revealed to 

promote stemness-like phenotypes of intestinal cancer 
organoids [169], which often led to tumor recurrence, 
metastasis, and therapy resistance. In addition, two 
tumoroids that both harbored EGFR p.L858R muta-
tions responded differently to the EGFR inhibitor erlo-
tinib [16]. Amplification of MET in the organoid was 
revealed to probably contribute to resistance to erlo-
tinib, since the c-Met inhibitor crizotinib significantly 
suppressed the growth of erlotinib-resistant organoids 
[16].

Androgen receptor (AR) pathway inhibitors are among 
the clinically commonly applied drugs for the popula-
tion with PC, exerting potent tumor-killing effects [170]. 
However, some patients with PC gradually become 
resistant to AR inhibitors, which might be explained by 
epigenetic reprogramming driving castration-resist-
ant PC adenocarcinoma to neuroendocrine PC [170]. 
Researchers further confirmed that the ECM type differ-
entially modulates the response of PC organoids to the 
epigenetic repressor EZH2 and dopamine receptor D2 
[170]. This phenomenon suggests that ECM regulates the 
response to targeted therapies during the transition from 
castration-resistant PC adenocarcinoma to neuroendo-
crine PC [170]. The presence of MDSCs correlates with 
the resistance state of tumoroids with PD-L1 expression 
to nivolumab (a PD-1 receptor inhibitor) [156]. Collec-
tively, these results indicate that organoids potentially 
represent an excellent tool for revealing drug-resistant 
mechanisms.

Identification of novel tumor biomarkers
Tumoroids also exert great potential in discovering novel 
tumor biomarkers [4, 75, 100]. Ukai S and colleagues 
developed and harvested 5-FU-resistant GCOs [75]. A 
microarray analysis revealed that KH domain-containing, 
RNA binding, and signal transduction associated 3 rep-
resented an independent prognostic factor for patients 
with gastric cancer, especially for the population treated 
with 5-FU [75].

Another study documented the feasibility of employ-
ing PDAC PDX-derived organoids to identify promis-
ing and clinically significant biomarkers of extracellular 
vesicles for tumor detection and diagnosis with small 
amounts of media supernatant [4]. This study screened 
241 proteins from 1465 identified proteins, focused on 
5 markers (cluster of differentiation 44 (CD44), glypican 
4, UGLUT2, CD14, and annexin A11), and identified 
annexin A11, CD44 variant 6, and glypican 4 as potential 
candidate biomarkers [4, 171].
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The potential for personalized medicine
Predicting the drug response
Previous studies have witnessed consistency in determin-
ing drug responses among organoids, PDXs, and corre-
sponding primary tumors from patients [13, 16, 24, 172, 
173], indicating that organoids are a promising tool for 
predicting responses to therapeutic agents. PDOs estab-
lished from metastatic gastrointestinal cancers serve as 
an excellent tool for predicting the response to targeted 
chemotherapy or novel agents with 93% specificity and 
100% sensitivity [12]. The study by Seidlitz T verifies 
that GCOs sufficiently recapitulate divergent responses 
to chemotherapy, including 5-fluorouracil, irinotecan, 
oxaliplatin, docetaxel, and epirubicin, which are rou-
tinely applied drugs for gastric cancer [26]. The study by 
Grossman JE and colleagues revealed the concordance 
between the drug sensitivity of PDAC PDOs and the clin-
ical responses of matched individual patients to the same 
antitumor drugs [96].

Wang Y has described the preliminary safety and anti-
tumor efficacy of pyrotinib (a pan-HER receptor tyrosine 
kinase inhibitor) by studying tumoroids and correspond-
ing xenografts derived from tumor samples from patients 
with HER2-A775_G776YVMA-inserted advanced lung 
adenocarcinoma [174]. Pyrotinib significantly inhibits 
the growth of organoids and induces a remarkable reduc-
tion in the tumor burden among mouse PDX models 
compared with afatinib [174]. Consistently, a phase II 
clinical trial enrolling a total of 15 patients with HER2-
mutant NSCLC showed that patients benefited from 
pyrotinib treatment with an objective response rate of 
53.3% and a median of approximately 6.4 months elapsed 
before tumor progression [174].

The PDO biorepository of locally advanced rectal can-
cer was generated by Yao Y and colleagues [112]. Patients 
whose tumor tissues were utilized to generate organoids 
in this study were enrolled in a phase III clinical trial. The 
results of this coclinical study showed that responses of 
rectal cancer organoids to chemoradiation displayed 
high similarity with the responses in matched patients 
with 84.43% accuracy [112]. Another study conducted 
by Ganesh K et al. revealed the heterogeneous responses 
of rectal cancer organoids to 5-FU treatment, FOLFOX 
(5-FU, leucovorin, and oxaliplatin) exposure and ionizing 
radiation, consistent with data from the corresponding 
patients [107]. The KRAS-mutant rectal cancer organoids 
showed resistance to the EGFR inhibitor cetuximab, 
whereas KRAS-wild-type tumoroids displayed sensitiv-
ity to this drug, consistent with the clinical trial show-
ing that the KRAS mutation correlates with resistance to 
EGFR-targeted therapy [107].

Apart from chemotherapy and targeted therapy, tumor-
oids also show potential in predicting tumor responses to 

immunotherapies [175]. Using the ALI method, PDOs 
from NSCLC, melanoma, and renal cancer were success-
fully generated and contained various types of immune 
cells, including functional tumor-infiltrating lympho-
cytes, natural killer cells, and tumor‐associated mac-
rophages [159]. Upon PD-1/PD-L1 blockade, activation 
of T cells and tumor killing activity were detected in 6 
of 20 PDOs derived from immunotherapy‐responsive 
tumors, consistent with clinical trials of different tumor 
types [159]. According to the study by Votanopoulos, 
immune‐enhanced patient-derived tumoroids are suc-
cessfully established through the incorporation of lymph 
nodes [175]. This study showed a high clinical correlation 
(85%) of these tumoroids with the response to check-
point inhibitors [175]. Thus, refined PDOs may promote 
the prediction evaluation of individual tumor responses 
to clinically used immunotherapies.

Despite the great potential of organoids in predicting 
drug responses, the processes of tumoroid generation and 
drug testing are time-consuming, which hampers better 
clinical application of organoid technology. Encourag-
ingly, a recent study reported successful one-week drug 
sensitivity testing in LCOs [22]. LCOs that were gener-
ated and analyzed using microwell arrays were applied to 
conduct drug sensitivity testing with the InSMAR-chip 
[22]. The one-week on-chip drug sensitivity faithfully 
recapitulated patients’ therapeutic responses, as verified 
by PDX models [22]. This short-term drug response test-
ing of tumoroids using the InSMAR-chip makes orga-
noids better suited for use in the clinic.

Exploration of promising combination treatment strategies
Organoids have been shown to be a promising plat-
form for exploring better combination treatment strat-
egies. Previous studies based on tumoroids guided the 
selection of a combination treatment consisting of the 
KRAS-selective inhibitor AMG501 and EGFR inhibi-
tor cetuximab for CRC organoids with KRASG12C muta-
tion rather than single KRAS inhibitor exposure [113], 
the combination of the FGFR inhibitor BGJ398 and the 
mitogen-activated protein kinase inhibitor trametinib for 
FGFR1-aberrant NSCLC organoids instead of the combi-
nation of BGJ398 and PI3K inhibitor BKM120 [24], and 
combination treatment with MC3138 (a SIRT5 activator) 
and gemcitabine for patients with PDAC harboring low 
SIRT5 expression [176].

Mutational profiles of tumoroid lines may guide the 
selection of potentially effective combination chemo-
therapeutics. Based on the tumoroid platform, combina-
tion treatment consisting of EGFR pathway blockade and 
AURKA inhibition was found to be probably effective 
for chemoresistant CRC liver metastases with acquired 
KRAS mutation and increased expression of AURKA and 
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c-MYC as a second-line treatment candidate [168]. Com-
bination treatment with JNJ-42756493 (an FGFR inhibi-
tor) plus AZD8055 or sirolimus (an mTOR inhibitor) 
exerted greater antitumor effects on organoids harbor-
ing FGFR3 mutations and nonsense TSC mutations than 
single-drug treatment, which was validated in orthotopic 
PDXs [121].

Combination treatment with talazoparib (a PARP 
inhibitor) and CX-5461 (an inhibitor of RNA polymer-
ase I transcription and an activator of the DNA damage 
response) might be a promising candidate treatment for 
HR-proficient patients who are not suitable for PARP 
inhibitor monotherapy, which was verified by increased 
DNA damage and decreased growth of organoids derived 
from HR-proficient castrate-resistant PC after treatment 
[177]. Based on tumoroids generated from circulating 
tumor cells of patients with HCC, oral cancer, or CRC, 
the Antrodia cinnamomea mycelium-derived bioactive 
compound GKB202 was indicated to be a promising 
adjuvant and enhancer for 5-FU-based treatment [178]. 
Collectively, organoids might serve as an excellent plat-
form to explore novel and promising combination treat-
ment strategies for patients with intractable tumor types.

Discovery of novel anticancer targets and promising drug 
candidates
Organoids are also utilized to provide insights into pos-
sible therapeutic targets and facilitate the development 
of novel antitumor drugs, such as the SMAC mimetic 
LCL161 for liver metastatic rectal cancer organoids [114] 
and the novel CDK7 inhibitor YPN-005 for SCLC orga-
noid lines [179]. A high-throughput screen based on the 
interaction of patient-derived BCOs and tumor-specific 
cytotoxic T cells identified three epigenetic inhibitors, 
BML-210, GSK-LSD1, and CUDC-101, with significant 
antitumor effects [180]. Additionally, BML-210 remark-
ably sensitized BC to a PD-1 inhibitor [180]. Based on 
the coculture of glioma organoids and human umbilical 
vein endothelial cells in fibrin gel, the drug atorvastatin 
dose-dependently exerts significant inhibitory effects on 
angiogenesis with downregulation of VEGF, CD31, and 
Bcl-2 [140]. This phenomenon indicated that atorvastatin 
might be a promising agent for glioblastoma treatment.

Both the tumor-suppressing or killing effects of drugs 
themselves and the efficient delivery of drugs into tumors 
are important for cancer treatment. Based on multicel-
lular HCC organoids containing both HCC cells and 
diverse stromal cells (ECs, fibroblasts, and hepatic stellate 
cells) [181], high activity of Yes-associated protein/tran-
scriptional coactivator with PDZ-binding motif signaling 
was shown to be associated with stromal activation in 
HCC and suppressed the penetration of verteporfin into 

tumoroids, indicating that treatments targeting activated 
cancer stroma might facilitate drug delivery into HCC 
[181].

Tumor organoids versus PDX models
PDX models represent excellent in  vivo imitations with 
more than 85% accuracy [182]. PDX models cannot be 
built before the direct transfer of a fresh biopsy specimen, 
tumor sample surgically removed from patients, malig-
nant ascites-derived tumor cells, or circulating cancer 
cells into immunodeficient mice [183–185]. Tumor tis-
sues contain tumor cells, tumor architectures, and a pop-
ulation of stromal cells [3]. Thus, PDX models can well 
recapitulate the histological characteristics, molecular 
features, and intertumoral and intratumor heterogene-
ity of parent tumors [186–188]. PDXs are often essential 
for authentication in clinical experiments [189] and have 
been extensively used for preclinical and translational 
cancer research [190–192].

Emerging evidence indicates that some limitations 
hamper its broad and extensive application in basic 
research and personalized medicine [193, 194]. First, 
these models are costly [195] and time-consuming 
[183, 193, 196]. Establishment of PDX models generally 
requires approximately 4–8 months for preclinical appli-
cations [5], which may lead to missing the best therapy 
opportunity for patients with cancer. Second, the stroma 
is not exactly the same as the original stromal compo-
nents. After implantation, the original tumor-associated 
stroma derived from primary human tumors is gradu-
ally replaced by the extracellular matrix and fibroblasts 
of the hosts [197]. Third, ethical concerns and animal 
welfare should be considered. Fourth, the engraftment 
rate of these models remains low (average 30–40%) [193] 
and fluctuates substantially, depending on parent tumor 
types, malignancy grade [187, 197–199], implantation 
sites [5], and tumor tissue volume [5]. According to 
work from Yoko S DeRose, a higher success rate of PDX 
engraftment is significantly correlated with shorter over-
all survival of patients with breast cancer [187], indicat-
ing that a higher “take rate” of implantation is positively 
associated with a higher malignancy of primary tumors. 
In addition, the success rate of engraftment varies at dif-
ferent implantation sites. Common implantation sites 
include subcutaneous, subrenal capsule, and orthotopic 
sites. The identification of the best transplantation site 
is important. In addition, the volumes of some human 
tumors are originally small, such as head and neck squa-
mous cell carcinoma and cholangiocarcinoma [5]. Suf-
ficient tumor tissue is one of the prerequisites for PDX 
development. Insufficient tumor volume of these can-
cer types limits the generation of corresponding PDXs. 
Therefore, more efforts are needed to improve methods 
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and techniques aimed at increasing the implantation effi-
ciency of these tumor types.

PDXs and tumor organoids are both excellent platforms 
for basic research and translational medicine. However, 
some major differences have been noted between these 
two models. Compared with tumoroids, PDXs are in vivo 
models rather than in  vitro models. PDX establishment 
requires a larger quantity of cells and more time and is 
more expensive. In addition, high-throughput analysis 
and screening of PDXs are more difficult, but PDXs can 
be more feasibly and better standardized. A comparison 
between PDXs and PDOs is shown in Table 2. After con-
sidering the advantages and disadvantages of these two 
models, one cannot be completely replaced by the other, 
but the combination of these two models might com-
pensate for the shortcomings of the other. Researchers 
can develop appropriate options for distinct assays and 
experimental purposes.

Limitations
Although organoids are honored as “approximating 
organs” and show great potential in basic cancer research 
and clinical applications, some current challenging bot-
tlenecks and difficulties remain to be solved. First, orga-
noid establishment, maintenance, and passages are costly. 
Second, the current success rates of establishing diverse 
cancer types vary substantially [121, 200]. A further 
improvement in the establishment rate is important and 
is affected by various factors, such as the cellularity of the 
corresponding primary tissues [12]. Third, optimized and 
standardized culture conditions for distinct tumoroids 
should be established to improve large-scale tumoroid 
reproducibility and facilitate the application of organoid 
technology in high-throughput drug screening. Fourth, 
the effects of current ECM components on tumoroid 

applications remain unclear. Fifth, tissue samples pre-
pared for organoid generation are only small parts of the 
whole tumor. The higher heterogeneity of tumors ques-
tions the reliability of substituting small pieces for whole 
tumor tissues. Tissue extraction from different sites of 
the same tumors might better reflect tumor heterogene-
ity and reliably facilitate cancer translational research. 
Sixth, the current organoid technology is unable to easily 
replicate the complexity of the patient-specific immune 
environment. Although the coculture system of tumor-
oids and immune cells has promoted better modeling of 
tumor–immune interactions and their effects on treat-
ment, some challenges might hamper the accurate mode-
ling and prediction of responses to immunotherapies. For 
instance, different tumor types possess distinct immune 
components and different cell quantities, which affect 
the immune cell composition in the early stage of tumor-
oid culture and the option to maintain and expand these 
immune cells. Some tumors contain numerous and com-
plex types of immune cells, while other tumor types only 
possess immune cells in the surrounding stroma or lack 
immune cells. The addition of HLA-mismatched alloge-
neic exogenous immune cells to organoid cultures might 
contribute to high background killing and reduce assay 
specificity [161]. In addition, although preserved immune 
cells can be maintained initially, they may be lost and 
diluted over time [201]. Imprecise modeling of the tumor 
immune environment prevents organoids from being 
useful for translational medicine and precision medicine. 
Seventh, vascularization of organoids is still a major chal-
lenge. Although implantation of organoids into animals 
or coculture systems promotes organoid vasculariza-
tion, these methods only endow organoids with vascular 
characteristics but not functional perfusion vessels [189]. 
The current microfluidic platform used to establish vas-
cularized organoids is crude and semiadjustable, and it is 
affected by multiple factors, including the concentration 
and composition of cytokines and flow rate. More accu-
rate and flexibly controllable and detectable microfluidic 
platforms are urgently needed for better vascularization 
of organoids and accurate prediction of responses to 
antiangiogenic therapies.

Conclusions
Organoids tailored to individual patients have revolu-
tionized cancer research and show great potential in 
promoting personalized medicine. Tumoroids in proper 
culture systems faithfully retain morphological charac-
teristics, genomic profiles, and mutational landscapes 
and recapitulate the genetic and phenotypic heterogene-
ity of the original tumors. Cocultures with stromal cells 
and immune components endow organoids with the 
capacity to model the TME. The accurate recapitulation 

Table 2 Comparison between patient-derived xenografts (PDXs) 
and patient-derived organoids (PDOs)

PDXs PDOs

Ex vivo, in vivo, or in vitro In vivo Ex vivo or in vitro

Use of immunodeficient animals Yes No

Quantity of cells for establishment Large Small

Establishment time 6–8 months 4–6 weeks

Initiation success Moderate Moderate

Cost More expensive Expensive

Genetic/epigenetic alterations Similar Similar

Pathohistological characteristics Similar Similar

Response to anticancer drugs Similar Similar

Reliability as preclinical models Yes Yes

Throughput Low Moderate

Standardization Moderate Low
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of primary human tumors makes organoids an excel-
lent platform for both basic research and translational 
medicine, including cancer modeling for the investiga-
tion of tumorigenesis and cancer progression, as well as 
drug response prediction, therapy optimization, and the 
discovery of novel antitumor drugs in a patient-specific 
manner. However, the current organoid system has some 
shortcomings, as described above, which hamper rou-
tine clinical application. More studies are needed to solve 
these problems and improve this technology.
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