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Pim kinases in hematological malignancies: where
are we now and where are we going?
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Abstract

The proviral insertion in murine (PIM) lymphoma proteins are a serine/threonine kinase family composed of three
isoformes: Pim-1, Pim-2 and Pim-3. They play a critical role in the control of cell proliferation, survival, homing and
migration. Recently, overexpression of Pim kinases has been reported in human tumors, mainly in hematologic
malignancies. In vitro and in vivo studies have confirmed their oncogenic potential. Indeed, PIM kinases have shown
to be involved in tumorgenesis, to enhance tumor growth and to induce chemo-resistance, which is why they have
become an attractive therapeutic target for cancer therapy. Novel molecules inhibiting Pim kinases have been evaluated
in preclinical studies, demonstrating to be effective and with a favorable toxicity profile. Given the promising results,
some of these compounds are currently under investigation in clinical trials. Herein, we provide an overview of the
biological activity of PIM-kinases, their role in hematologic malignancies and future therapeutic opportunities.
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Introduction
The proviral insertion in murine (Pim) lymphoma family
proteins, whose gene locus was discovered as a proviral
integration site for Moloney murine leukemia virus infec-
tion, consists of three serine/threonine kinase isoforms:
Pim-1, Pim-2 and Pim-3 [1]. These proto-oncogenic ki-
nases are constitutively active and they are mainly regu-
lated at the transcriptional and translational level [2,3] by
cytokines and growth factors involved in hematopoiesis,
such as interleukin (IL)-2, IL-3 [4,5], IL-6, granulocyte-
macrophage colony-stimulating factor (GM-CSF) and
granulocyte-colony stimulating factor (G-CSF) [6]. Fur-
thermore, the stability and function of Pim kinases depend
on their interaction with heat shock protein (Hsp) 90, a
chaperone protein involved in folding and stabilizing dif-
ferent molecules [7]. Hsp90 showed not only to protect
Pim-1 from ubiquitin-26S-proteasomal degradation, but
also to mainten the proper conformation of Pim-1 [8].
Pim kinases play a critical role in the control of cell pro-

liferation and survival. They are downstream effectors of
important oncoproteins, such as Ableson (ABL) [9], Janus
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Kinase 2 (JAK2) [10] and FMS-like tyrosine kinase 3
(FLT3) [11]. Although Pim kinases exert similar functions,
they have different tissue distributions [12,13]. While Pim-1
and Pim-2 are predominantly expressed in hematopoietic
cells [12,14], Pim-3 expression is high in brain, kidney, and
epithelia [12,15]. Due to their aberrant expression in human
tumors [16-19], they could be important contributors in
the pathogenesis of neoplasias including lymphomas, gas-
tric, colorectal and prostate cancers [20].
The oncogenic potential of Pim kinases has been studied

on transgenic mouse models. In the Eμ-pim1 model only
5–10% of mice developed T-cell lymphoma, suggesting
that Pim-1 alone is not able to induce a massive prolifera-
tion [21]. Interestingly, infection of these transgenic mice
with murine leukemia virus (MuLV) promoting the inte-
gration of the provirus in the Pim-1 locus [22] enhanced
dramatically the incidence of tumors and reduced the
latency of T-cell lymphoma development [21]. The activa-
tion of either c-Myc or N-Myc was involved in every tumor,
suggesting an oncogenic collaboration between Myc and
Pim-1 genes in lymphomagenesis [21,23]. Co-expression
of both Eμ–Pim1 and Eμ–Myc was incompatible with life,
leading the transgenic mice to succumb to lymphomas in
utero or around birth. Conversaly, Eμ-Myc;Eμ-Pim1 mice
with low expression of c-Myc were viable and with low
tumor incidence [24].
ral Ltd. This is an Open Access article distributed under the terms of the Creative
ommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and
iginal work is properly credited. The Creative Commons Public Domain
g/publicdomain/zero/1.0/) applies to the data made available in this article,

mailto:patriziamondello@hotmail.it
http://creativecommons.org/licenses/by/4.0
http://creativecommons.org/publicdomain/zero/1.0/


Mondello et al. Journal of Hematology & Oncology 2014, 7:95 Page 2 of 9
http://www.jhoonline.org/content/7/1/95
The oncogenic role of Pim-1 and its cooperation with
c-Myc have also been studied in prostatic cancer. Pim-1
demonstrated to promote prostate tumorgenesis by en-
hancing the transcriptional activity of androgen receptors.
Notably, Pim1-expressing cells presented an increased c-
Myc transcriptional activity as well. Treatment with the
c-Myc inhibitor 10058-F4 reduced Pim-1 protein and
suppressed the tumorigenicity of the prostate cancer cells
[25]. In addition, Pim kinases have been demonstrated to
cooperate with other oncogenes, such as bcl2 [26], bcl6
[27], runx2 [28], E2a-pbx1 [29], frat1 [30].
PIM knock-out studies have shown that mice deficient

in all three Pim kinases are viable and fertile, supporting
the tolerability of pan-Pim inhibition [12]. Mikkers et al.
demonstrated that the lack of these kinases resulted in
only a decrease of erythrocyte mean cell volume (MCV)
[12]. However, a recent study has proved that the triple
PIM knock-out affected multiple lineages of hematopoietic
cells as well as the self-renewal of hematopoietic stem cells
(HSCs) [31]. Based on these results a careful monitoring of
potential hematological side effects is recommended with
the Pim inhibitors treatment.
In this review we provide an overview of the biological

background of Pim kinases, their role in hematologic
malignancies and a summary of possible drugs targeting
theses enzymes.

The oncogenic potential of PIM kinases
Pim kinases are critical components of distinct pathways
that play an important role in cell proliferation and survival
Figure 1 Mechanisms regulating Pim levels and downstream activatio
[32-34] (Figure 1) and especially in apoptosis, cell cycle
regulation, cell proliferation and cell migration.

Apoptosis
Pim kinases prevent cells from apoptosis by phosphoryl-
ating the proapoptotic Bcl-2–associated agonist of cell
death (Bad). Phosphorylation of Bad on Serine (Ser) 112
and Ser136, respectively by Pim-1 and Pim-2, induces
14-3-3 binding, which results in loss of the binding with
the anti-apoptotic protein Bcl-2 and, consequently, in
cell survival [35-37]. Similarly, phosphorylation of Bad on
Ser155 by Pim-3 was found to prevent Bad from binding
to the anti-apoptotic protein Bcl-xL [38]. In addition, the
pro-survival activity of Pim kinases seems to depend also
on direct phosphorylation of the apoptosis signaling kin-
ase 1 (ASK1) [39], which decreases significantly ASK1 ac-
tivity and inhibits ASK1-mediated phosphorylation of JNK
and p38. Ultimately this phosphorylation event leads to
blocking caspase-3 activation and decreasing apoptosis
levels [39].
Pim kinases usually phosphorylate Mdm2 on Ser166

and 186, an E3 ubiquitin ligase which mediates ubiquityla-
tion and proteasome-dependent degradation of p53 [40].
Notably, these residues are targets of other signaling path-
ways including Akt [41-46]. When Pim kinases are over-
expressed, such as in tumors, they block the degradation
of both p53 and Mdm2 in a Mdm2-independent manner,
leading to an increase of p53. In addition, Pim-1 enhances
p14ARF activity [40], a Mdm2 inhibitor well known to ar-
rest the degradation of both p53 and Mdm2 itself [47,48].
n.
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Finally, Pim-2 maintains high levels of NFkB required
for its antiapoptotic function. Indeed, transcriptional tar-
gets of the NF-kB include many genes associated with
survival, such as Bcl-2 and Bcl-xL. Hammerman et al.
demonstrated that Pim-2 activates NF-kB by inducing
phosphorylation of Cot, a serine/threonine kinase down-
stream to both MAPK/ERK and NF-kB signaling path-
ways [49]. Furthermore, Pim-1 phosphorylates RelA/p65,
the main subunit of NF-kB, preventing its degradation
from ubiquitin-mediated proteolysis. Knocking down
Pim-1 severely impaired cell survival, at least in part, by
interfering RelA/p65 activation [50].

Cell cycle regulation
Pim kinases are involved in cell proliferation through the
phosphorylation of the cyclin-dependent kinase inhibitors
p21 at Threonine (Thr)145 and Ser146 [51,52], p27 at
Thr157 and Thr198 [53]. Phosphorylation of p21 induces
its translocation from the nucleus to the cytoplasm, result-
ing in cell proliferation and survival [54,55]. Overexpres-
sion of Pim-2 leads to enhanced levels and stability of p21,
while knockdown of Pim-2 results in reduced levels of p21
[52]. Notably, treatment with pan-Pim inhibitor lowered
not only Pim-2 kinase activity, but also p21 phosphoryl-
ation [56]. An inverse relation seems to exist between Pim
and p27 levels. Morishita et al. have demonstrated that
phosphorylation of p27 by Pim kinases prompts its bind-
ing to 14–3–3 proteins and subsequent nuclear exclusion
and degradation of p27. Furthermore, Pim kinases seem to
down-regulate p27 at the transcriptional level by inactivat-
ing Forkhead transcription factors [53]. In addition, Pim-1
seems to influence cell cycle phase transition by phos-
phorylating critical tyrosine phosphatases: Cdc25A for
the G1/S and Cdc25C, and the Cdc25C-associated kinase
(C-TAK)1 for the G2/M [57,58].
In further support of its role in the cell cycle, Pim-1

showed to phosphorylate the nuclear mitotic apparatus
protein (NuMa), that is essential for mitotic spindle for-
mation and aids in chromosome separation. Pim-1 seems
to contribute to maintenance of a stable connection
between NuMA, dynein/dynactin and the pericentric pro-
tein HP1β, a complex that is necessary for mitosis. Notably,
the ‘kinase-dead’ mut-Pim-1-GFP fusion protein hinders
the progression of mitosis and results in rapid cell death
by apoptosis [59].

Cell Proliferation
Pim-1 and/or Pim-2 are significant downstream targets
of transcription factors STAT 3 and STAT 5 [60]. Pim
kinases in turn are able to influence the JAK/STAT path-
way through their direct interaction and phosphorylation
of Suppressor of Cytokine Signalling (SOCS)-1, a well-
known regulator of this signaling pathway [61,62]. The
modulation of SOCS1 by Pim kinases seems to have a
critical role in v-Abl-induced tumorgenesis. In the xeno-
graft model v-Abl was not able to transform bone mar-
row cells deficient in the Pim-1/Pim-2 model, but it
partially succeeded in its transformation activity combin-
ing the triple knockout of Pim-1, Pim-2 and SOCS1 [63].
Although Pim kinases are pro-oncogenic proteins, they
are not sufficient to initiate disease [64] and therefore a
cooperation between Pim-1 and c-Myc is required for
promoting STAT3-mediated cell cycle progression [65].
Both Pim-1 and Pim-2 phosphorylate c-Myc, increasing
its stability and consequently its transcriptional activity
[66]. Recently, it has been demonstrated that this cooper-
ation takes place also at the transcriptional level through
Pim-mediated phosphorylation of preacetylated hystone
H3 on Ser10 (H3S10) [67]. The H3S10 phospholytation is
required to mediate the interaction with 14-3-3 proteins
[68] and the ensuing recruitment of the histone acetyl-
transferase MOF, which acetylates histone H4, generating
a nucleosome platform for bromodomain-containing pro-
tein 4 (BRD4) binding. Thereafter, the positive transcrip-
tion elongation factor b (P-TEFb) is recruited inducing
the phosphorylation of RNA polymerase II (Pol II) and
the release of stalled Pol II, which activates transcrip-
tional elongation [69]. However, Pim kinases contribute for
about 20% of Myc-induced gene expression [67]. c-Myc
stability is mainly controlled by the ubiquitin–proteasome
system, in particular by Fbxw-7 [70]. An inverse propor-
tion exists between Fbxw-7 and c-Myc levels [71,72], con-
sequently Fbxw-7 deletion was associated with c-Myc
accumulation and aberrant cell cycle entry [73,74]. Muta-
tion of Fbxw-7 has been found in solid [75-78] and blood
malignancies [79]. In addition, also the control of miRNA
expression plays an important role in Myc-mediated
tumorgenesis. Several studies found that c-Myc repressed
a wide range of miRNAs by directly binding the promoter
of these miRNAs [80,81], favoring Myc-mediated tumor-
genesis and conferring a more aggressive feature.
Pim activity is synergistic with another independent pro-

survival pathway, phosphoinositide-3 Kinase/Akt/mammalian
(PI3K/Akt/mTOR) [82]. Pim-2, but not Pim-1, has been
identified as the principal kinase that phosphorylates the
translational repressor 4E-BP1 and p70S6 independently
of the PI3K/Akt/mTOR pathway [2]. Indeed, the activa-
tion of Pim-2 revealed an important role in cell growth
resistant to rapamicin, an mTOR inhibitor [83]. There-
fore, suppressing Pim-2 is important to treat rapamycin-
resistant tumors.

Cell migration
The Pim proteins also revealed an involvement in signal-
ing pathways that control cell migration. Pim-1 plays a
significant role on MET expression, the receptor for hep-
atocyte growth factor (HGF) involved in signaling normal
and tumor cell migration and invasion. Pim-1 controls the
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translation of MET by phosphorylation of eukaryotic initi-
ation factor 4B (eIF4B) at Ser406 and the use of Pim
inhibitor has been associated with a significant decrease of
MET expression [84].
In addition, Pim-1 showed an influence on the chemo-

kine ligand 12 (CXCL12)/chemokine (C-X-C motif ) re-
ceptor 4 (CXCR4) expression, a ligand/receptor system
with a crucial role in normal homeostasis [85], especially
in the hematopoietic stem cells grafting [86,87]. Extracel-
lular signal-regulated protein kinase 1/2 (ERK1/2) [88,89],
PI3K [90] and Syk [91] transduction pathways showed to
be differently implicated in CXCR4-mediated migration
and proliferation. The imbalance of CXCL12/CXCR4 axis
is implicated in cancer progression and spreading of
tumor-initiating cells [92]. In vitro experiments sug-
gested that Pim-1 might regulate CXCR-4 expression
through phosphorylation of the Ser339 in the intracellular
domain involved in receptor internalization [93]. Pim-1
overexpression has proved to correlate with CXCR4 levels
also in leukemic blasts. Interestingly Pim inhibitor treat-
ment led to downregulation of CXCR4 surface expression
in primary cells, inducing impairment of Pim-mediated
cell survival and block of CXCR4-mediated interaction of
cells with their protective microenvironment [93,94].

Expression levels of PIM kinases in hematologic cancer
Overexpression of Pim kinases has been observed in differ-
ent human cancers, but mainly in haematological malig-
nancies [20]. Initially, overexpression of Pim-1 was found
in human myeloid and lymphoid leukemias [33,34]. In
acute myeloid leukemia (AML) increased levels of Pim-1
have been associated with aberrant expression of the
mixed-line-age leukemia (MLL) gene [95] as a consequent
activation of tyrosine-kinase receptor FLT3 or the tran-
scriptional regulator Hoxa9 [11,96-98].
Almost half of diffuse large B-cell lymphoma (DLBCL)

tissues showed an increased expression of Pim kinases
[99,83], which is even more frequent in the activated B-cell
Table 1 Novel Pim-Inhibitors in hematologic malignancies

Compound Class PIM inhibition selectivi

SGI-1776 imadizaopyridazine IC50: 7 nM PIM1, 363 nM
44 nM FLT-3 and 34 nM

SMI4a benzylidene-thiazolidene-2,4-dione IC50: 21 nM PIM1, 100 nM

Selective vs. 56 kinases [1

LGB321 3-(S)-amino-piperidine pyridyl
carboxamide

IC50: 0.001 nM PIM1, 0.00
and 0.0008 nM PIM3 [106

AZD1897 IC50: 3 nM PIM1,2 and 3

SEL24-B58 Benzoimidazol IC50: 31 nM PIM1, 154 nM
Selective in a panel of 29
exception of haspin, HIPK

AZD1208 thiazolidene IC50: Pim-1 0.4 nM, Pim-2
Pim-3 1.9 nM [115].
(ABC) subtype due to the constitutive activation of JAK/
STAT3 signaling [14]. Brault et al. proved a strong correl-
ation between level expression of Pim kinases, STAT signal-
ing, higher proliferative rate, and more advanced disease
stage. Therefore, these findings suggest the possible role
of Pim kinases as markers for DLBCL progression [100].
Increased levels of Pim-2 were also found in mantle cell

lymphoma (MCL), follicular lymphoma (FL), marginal zone
lymphoma-MALT type (MZL-MALT), chronic lympho-
cytic leukemia (CLL), nodal marginal zone lymphoma
(NMZL) [17,101,102] and multiple myeloma [103].

Pim kinases as therapeutic targets
Pim kinases are attractive therapeutic targets since they are
often aberrantly expressed in several hematologic disorders
and because they contribute to cellular proliferation and
migration. A large number of new molecules have been
produced so far. While most of them are specific inhibi-
tors of Pim-1, only few are able to inhibit all Pim isoforms
[104,105] (Table 1). However, because of the overlapping
functions of these kinases, a pan-Pim inhibitor resulted to
be more effective than a selective one [106].
A first generation of Pim-inhibitors (SGI-1773, SGI-1776)

demonstrated high antitumor activity both in vitro
and in vivo in different hematological tumors [107-109].
SGI-1776 is an imadizaopyridazine with nanomolar activ-
ity not only on the three Pim kinases, but also on Flt3
and Haspin. Therefore, the real contribution of Pim inhib-
ition to the efficacy of this compound is unclear. In con-
trast to SGI-1773, SGI-1776 has shown to induce an
almost complete suppression of Cyclin D1, cMYC and
MCL1. In addition, SGI-1776 has been demonstrated to
overcome Pim2-mediated rapamycin resistance without in-
creased toxicities in a mouse model [110]. Based on these
positive results, a phase I clinical trial recruiting castration-
resistant prostate cancer or relapsed/refractory non-
Hodgkin lymphoma patients was conducted. However,
due to unexpected severe cardiotoxicity the trial was ended
ty Development Disease

PIM2, 69 nM PIM3,
Haspin [107].

Failure in phase I clinical
trials by cardiotoxicity

Non-Hodgkin
lymphoma

PIM2 [113]. Preclinical Acute myeloid
leukemia

14].

21 nM PIM2,
].

Recruiting patients for
clinical trials

Multiple myeloma

[115]. Preclinical Acute myeloid
leukemia

PIM2, 152 nM PIM3.
9 kinases with the
and CLK kinases [117].

Preclinical Leukemic monocyte
lymphoma

5.0 nM and Recruiting patients for
clinical trials

Acute myeloid
leukemia
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early. (NCT00848601) This event could be related to the
inhibition of Pim-1, which has been demonstrated to play
an important role in the promotion of cardioprotective sig-
naling and inhibiting pathological injury [111,112].
Second generation Pim-inhibitors were designed to in-

crease specificity and to eliminate cardiotoxicity. SMI4a
is a benzylidene-thiazolidene-2,4-dione inhibiting PIM1
(24 nM) and PIM2 (100 nM) [113]. This molecule is able
to induce G1 arrest through a marked increase of p27
and consequently inhibition of cdk2. In a mouse model
SMI4a induced a delay in tumor growth without import-
ant toxicity [113]. SMI4a demonstrated synergy with the
mTOR inhibitor rapamycin by downregulating p4EBP1
and blocking proliferation in AML cells [114]. Since SMI4a
increases phosphorylation of ERK1/2, its association with a
MEK1/2 inhibitor also showed a good synergistic activity
leading to a higher death rate of precursor T-cell lympho-
blastic lymphoma cells [113].
LGB321 is a 3-(S)-amino-piperidine pyridyl carboxa-

mide, ATP-competitive inhibitor of all three Pim kinases
with a 50% inhibitory concentration (IC50) for Pim-1,
Pim-2 and Pim-3 of 0.001, 0.002 and 0.0008 nM, respect-
ively. LGB321 was tested in different hematologic cell lines
such as ALL, AML, multiple myeloma and B-cell NHL.
Among all studied cell lines, the multiple myeloma sub-
type was the most sensitive with IC50 values in the pico-
molar range. LGB321 efficacy and safety profiles were also
confirmed in vivo models [106]. Based on these data, a
phase I clinical trial evaluating the LGB321 activity in
relapse/refractory myeloma is ongoing (NCT02144038).
AZD1897 is an ATP-competitive pan-Pim inhibitor

with IC50 of 3 nM against Pim-1, 2 and 3 [115], recently
evaluated in treatment of AML. In vitro studies demon-
strated a limited activity of AZD1897 as a single agent,
but a strong synergy in combination with the AKT-inhibitor
AZD5363. This association led to a greater cytotoxic activ-
ity as well as a decreased downstream mTOR-targets
(p4EBP1, pS6 kinase) and MCL1 levels with respect to the
single agent therapy [116]. Based on the remarkable anti-
leukemic activity of AZD1897 combined with AKT inhib-
ition future clinical trials are warranted.
SEL24-B58 is able to inhibit all three Pim kinases

already at picomolar dose (IC50 values are: Pim-1 31 nM,
Pim-2 154 nM and Pim-3 152 nM). In vitro SEL24-B58
reduced Mcl-1 levels, demonstrating synergy in combin-
ation with the Bcl2-family inhibitor ABT-737 in leukemic
monocyte cells. The combination with JAK1/2 inhibitor
(Cyt387) in lymphoblastic leukemia cells resulted in a
synergistic antiproliferative activity as well. A Xenograft
model confirmed the efficacy of SEL24-B58 at a concentra-
tion of 150 mg/kg with a completed arrest of tumor growth
after 17 days of treatment and no toxicity [117].
AZD1208 is a thiazolidene, highly selective for Pim-1,

Pim-2 and Pim3 with a low nanomolar activity in cells
(IC50 of 0.4 nM for Pim-1, 5.0 nM for Pim-2, and 1.9
nM for Pim-3) [115]. AZD1208 demonstrated in vitro
and in vivo activity against AML. A significant growth
inhibition was evident in a dose-dependent manner. In-
deed, AZD1208 led to decreased phosphorylation of Bad,
4EBP1, p70S6K, and S6, as well as increased cleaved cas-
pase 3 and p27 [32]. Notably, it showed to be active in
Flt3-ITD primary tumor cells without the off-target in-
hibition activity [118] unlike previous PIM inhibitors
[108,109,119]. Based on these interesting data, AZD1208
is currently being evaluated in phase 1 clinical trials.
(NCT01489722, NCT01588548).

Conclusion
Pim kinases create a wide interest in oncology due to their
overexpression in cancer and association with enhanced
tumor growth and chemo-resistance. Given the close
advent of Pim inhibitors in clinic, it is important to find
their most efficient application. First of all biomarker iden-
tification might allow to select the patients and follow
the course of treatment. So far, no genetic markers have
been established to guide therapeutical decision. There-
fore, it may be worth improving the knowledge of Pim-
dependent gene expression and verify the existence of
a correlation between high levels of different subsets
of Pim-regulated genes and increased sensitivity to
treatment. Another open question is whether Pim kinase
inhibitors should be used as monotherapy or in combin-
ation. Preclinical data have shown that Pim inhibitors are
effective drugs when used as single agents. However, their
positive effect was even more pronounced when they were
combined with chemo- or other target-therapies (Pi3k/
AKT/mTOR inhibitor). In addition, these inhibitors dem-
onstrated to significantly reverse drug resistant pheno-
types in preclinical models. It is necessary to wait until the
conclusion of clinical trials using Pim kinases inhibitors to
see if tumor cells will develop resistance through other
signaling pathways. Finally, evaluation of toxicity will be
important as well due to the difficulty in finding the right
balance between sufficient inhibition and acceptable tox-
icity when multiple signaling inhibitors are combined.
In the near future research should focus on the activity

of Pim kinases and their involvement in resistance
mechanisms in order to allow for a more efficient treat-
ment and application.
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