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Abstract

Background: 7P53 defects, i.e. 17p13 deletion and/or nucleotide mutations, associate with short survival and
chemorefractoriness in chronic lymphocytic leukemia (CLL). In this context, since direct sequencing of the TP53
gene does not evaluate TP53 functionality, a functional assessment of TP53 pathway may be of interest to identify
high risk CLL. By taking advantage of a training cohort of 100 CLL and a validation cohort of 40 CLL with different
patterns of TP53 mutation/deletion by FISH and sequencing, we propose an in-vitro assay in which the modulation
of TP53 protein and CDKNTA mRNA were investigated upon 24-hour exposure of CLL cells to Nutlin-3.

Methods: The functional assay was set-up on cell lines recapitulating all TP53 genotypes (EHEB, TP53"“*" RAJI,
TP53™MUYWE MEC-1 and MAVERT, TP53™UV9€l HI-60, TP539€V4¢) and evaluated in two multi-institutional cohorts,
purposely enriched in CLL bearing TP53 disruption: a training cohort of 100 cases and a validation cohort of

40 cases, both characterized by FISH and TP53 direct sequencing. Cells were exposed to 10 uM Nutlin-3 for 24 hours;
TP53 accumulation was evaluated by Western blotting; TP53 transcriptional activity was determined by quantitative
realtime PCR (qRT-PCR) of the TP53 target gene CDKNITA.

Results: According to TP53 protein modulation, in the training cohort we identified: i) 63 cases (51 TP53VVWE

12 TP53%"Y with absence of basal TP53 and induction after treatment (normal pattern); i) 18 cases (3 TP53™V",
15 TP53MUV9ely with high basal TP53 without increase after treatment (mutant pattern); iii) 19 cases (5 TP53™/"
3 TP53MUVdel. 11 Tp53WUWl ith basal TP53 that increases upon treatment (intermediate pattern). Evaluation of
CDKNTA mRNA levels upon Nutlin-3 exposure showed that the 26 TP53 mutated (TP53™ Y9! or TPS3MUYVY cases
had lower induction levels than the majority (57/63) of cases with normal pattern, and 10/12 cases with intermediate
pattern without evidence of TP53 derangement by FISH and sequencing. These results were confirmed in the
independent validation cohort of 40 cases (13 P53Vt 3 Tpg3delivt 1) Tps3mut/del 15 Tpg3muvty

Conclusions: The proposed functional assay may integrate the conventional analyses for the identification of TP53
dysregulated CLL.
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Background

Chronic lymphocytic leukemia (CLL) is a heterogeneous
disease with highly variable clinical courses with sur-
vivals ranging from months to decades [1]. In particular,
a subset of patients is affected by a high-risk CLL form
that rapidly progresses and develops a symptomatic
disease requiring treatment. Over-represented in this
group are patients bearing either a chromosomal dele-
tion of 17p13.1, location of the tumor suppressor gene
TP53, and/or carrying mutations of the 7P53 gene [2-4].
Over 80% of CLL with a deletion at 17p13 also present a
TP53 mutation in the remaining allele, whereas TP53
mutations in absence of a concomitant deletion at 17p13
occur in 5-10% of CLL cases [5-9].

The TP53 protein is a transcription factor with a short
half-life, present at low levels under resting conditions
and that becomes activated following DNA damage. Ac-
tivation, occurring predominantly by phosphoryilation,
prolongs the half-life of the protein and allows it to
accumulate into the nucleus where it induces apoptosis,
cell cycle arrest, and DNA repair [10], thus playing a
pivotal role in limiting clonal expansion, maintaining gen-
omic stability, eventually mediating the action of DNA
damaging chemotherapy [11-15]. Conventional treatment
of CLL is usually based on cytotoxic chemotherapy using
alkylating agents or nucleoside analogues. The group of pa-
tients bearing a TP53 disruption (i.e. deletion of 17p13 and
mutations of the TP53 gene, or TP53 gene mutations alone)
has been shown to respond particularly poorly to chemo-
therapy [2-4,16,17]. Therefore, although deletion or muta-
tion of TP53 gene in previously untreated CLL patients are
reported to be 10-15% [7,8,18], the frequency of TP53
dysfunction increases to nearly 50% of patients when the
disease progresses following initial therapies [19,20], sug-
gesting that DNA damaging therapies exert a selective pres-
sure that may lead to TP53 inactivation and subsequent
resistance to commonly used chemotherapeutic agents.

In the last decade, functional assays in primary CLL
cells have been developed [20-29], with the aim: i) to
avoid large time- and money-consuming screenings of
TP53 gene mutations in non-17p deleted CLL cases; ii)
to detect defects in the TP53 pathway escaping fluores-
cence-in situ-hybridization (FISH) for 17p deletions or
mutational analysis by direct sequencing. In particular,
in-vitro exposure of CLL cells to the small non-
genotoxic molecule Nutlin-3, a potent and selective
inhibitor of TP53/MDM?2 interaction, has been proposed
to evaluate TP53 functionality [21,26,30].

By applying a training/validation strategy using a
cohort of 140 CLL cases with known TP53 status, we
propose a short term in vitro functional assay, based on
the exposure of CLL cells to the non-genotoxic TP53
activator Nutlin-3, as a tool to identify CLL cases with
dysregulated TP53 in a clinical setting.
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Results

Set up of a western blot assay to detect TP53 dysfunctions
A series of 5 cell lines encompassing all the types of
TP53 dysfunction was employed: i) EHEB cells lacking
both 17p deletion and TP53 mutations (TP53%"™); ii)
RAJI cells carrying 7P53 mutations in the absence of
concomitant 17p deletion (TP53 ™"™Y); iii) MAVER-1
and MEC-1 cells carrying both 17p deletion and 7P53
mutations (7P53%Y/™Y); iv) HL-60 cells bearing 17p de-
letion in both alleles (TP53%4¢). The TP53 status of the
employed cell clones was re-confirmed in the present
study by both FISH and direct sequencing approaches
in agreement with data reported by the IARC TP53
Mutation Database [31] (Additional file 1: Table S1).

Cells from cell lines bearing or not TP53 dysfunction
were treated for 24 hours with 10 uM Nutlin-3, and the
levels of TP53 were evaluated by western blotting.
As summarized in Figure 1A, EHEB cells (TPSSWt/Wt)
showed an absence of basal TP53 and a marked induc-
tion upon in vitro Nutlin-3 exposure (“normal” pattern).
An AnnexinV/7-AAD assay verified that Nutlin-3 expos-
ure was capable to effectively induce apoptosis in EHEB
cells, as documented by the death of the majority of the
population within 24 hours (Additional file 2: Figure S1).
In contrast, MAVER-1 (TP53%/™), RAJI (TP53 ™*")
and MEC-1 (7TP53%/™) cells showed a pattern charac-
terized by comparable TP53 levels between Nutlin-3
treated and untreated cells (“mutant” pattern; Figure 1A),
mapping at the conventional weight for MAVER-1 and
RAJI, or at lower molecular weight for MEC-1 cells,
which expressed a truncated TP53 protein, as reported
[31]. Finally, a total absence of TP53 levels before and
upon in vitro Nutlin-3 exposure was detected in HL-60
cells (TP53%/4 “null” pattern; Figure 1A). Consistently,
comparable mortality rates between Nutlin-3 treated
and untreated conditions were observed by AnnexinV/7-
AAD assay in cell lines expressing mutant/null TP53
statuses by western blot (Additional file 2: Figure S1).

To evaluate the sensitivity of the western blot assay for
TP53 detection, RAJI cells, expressing TP53 in basal
conditions, were mixed with EHEB cells, not expressing
TP53 in basal conditions, in order to obtain samples
containing 1%, 5%, 10%, 20%, 50% and 100% of RAJI cells.
A conservative estimate based on western blot results
suggested a sensitivity capable to detect as low as 5% of
TP53-expressing cells (Additional file 2: Figure S1B).

Functional characterization of TP53 dysfunction in CLL cases
In order to test the capability of the western blot assay
to detect TP53 functionality, we employed a training
cohort of 100 CLL cases. This cohort was purposely
enriched in cases bearing TP53 disruption (38 out of
100; 38%), including 17 p deletion alone (P53, 12
cases; 12%), 17p deletion associated with concomitant
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Figure 1 Set up of a western blot assay to detect TP53 dysfunction. A) Figure shows results from western blot assay on the series of the 5
cell lines, in particular EHEB (TP53"Y"Y with a normal pattern, MEC-1 (TP53%¢/™9 MAVER-1 (TP539€V™Y) RAJI (TP53™ ™Y with a mutant pattern,
and HL60 (TP53%€/4€y with a null pattern. B) Figure shows prototypic results from western blot assay of CLL cases with a normal pattern, with an
intermediate pattern and with a mutant pattern. C) Histograms show the functional classification according to western blot assay of CLL cases of
the training cohort subdivided into the main genetic subgroups. For each functional category the subdivision in genetic subgroup is indicated.

EIU 7'0 and 17p deletion

TPS53 mutations (TP53%V™ 18 cases; 18%), and a TP53
mutated status in the absence of 17p deletion (TP53™™,
8 cases; 8%), as indicated by FISH and direct sequencing
approaches (Additional file 1: Table S2). In particular,
FISH analyses revealed a percentage of 17p deleted nuclei
ranging from 14% to 90% in the TP53 mutated cases
(median percentage 53% of deleted nuclei) and from 5%
to 70% in deleted only cases (median percentage 10% of
deleted nuclei, p=0.003). Considering the evaluation of
TP53 mutational status by direct sequencing, all 7P53
mutations clustered in exons 5-8 with the only exclusion
of a case, in which a mutation in intron 3 was detected
(Additional file 1: Table S2).

By performing western blot analysis of TP53 expres-
sion on CLL cells from the training cohort exposed or
not to Nutlin-3, 63 out of 100 (63%) cases revealed a
normal pattern. These cases included all the 12 cases
bearing 17p deletion in the absence of detectable
concomitant 7P53 mutations, and all the 14 CLL cases
of the analyzed cohort bearing a 11q deletion in absence
of concomitant TP53 disruption (Figure 1B,C and
Additional file 2: Figure S2). Consistently, Nutlin-3
treated CLL cells from all these 63 cases displayed a high
mortality in vitro by the Annexin V/7-AAD assay
(not shown).

Eighteen out of 100 CLL cases (18%) displayed a
mutant TP53 pattern (i.e. high basal level of TP53 with-
out increase upon Nutlin-3 exposure; Figure 1B,C and
Additional file 2: Figure S2). All these cases showed a
TP53 mutated status by direct sequencing, associated
(15/18) or not with a concomitant 17p deletion
(Figure 1C and Additional file 2: Figure S2). Con-
sistently, all these cases had low mortality rates
in vitro by Annexin V/7-AAD assay without differences
between Nutlin-3 treated and untreated conditions
(not shown).

Finally, 19 out of 100 CLL cases (19%) showed an
intermediate pattern, characterized by an important basal
accumulation of TP53, increased upon incubation with
Nutlin-3 (Figure 1B,C and Additional file 2: Figure S2).
Patients belonging to this third group presented different
mortality levels by Annexin V assay (not shown). Eight
out of 19 CLL cases with an intermediate pattern showed
a mutated 7TPS53 status (3 cases with concomitant 17p
deletion) whereas the remaining 11 cases did not show a
mutated TP53 status by using direct sequencing (Figure 1C
and Additional file 2: Figure S2). Of note, among the
11 cases with an intermediate pattern not showing a
TP53 mutated status by direct sequencing, none was
17p deleted.
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Evaluation of TP53 target genes

No differentially expressed genes were found between
Nutlin-3 treated and untreated CLL cells by utilizing a
global gene expression profiling approach comparing
Nutlin-3 treated versus untreated samples of 7 TP53%/mut
CLL cases (not shown). Consistently, when Tp53del/mut
CLL cells, exposed or not to Nutlin-3, were tested for the
modulation of the genes previously identified to represent
the signature of Nutlin-3 exposed TP53""*' CLL cells
[32], none of these genes were found to be differentially
expressed upon Nutlin-3 exposure (Additional file 2:
Figure S3), including the TP53 target genes CDKNIA,
BAX and PUMA [32].

According to these results, we evaluated the expres-
sion levels of CDKN1A, BAX and PUMA upon Nutlin-3
treatment in CLL cases with an unmutated 7P53 status
(TP53*"™* or TP53%™* genotype, overall accounting for
74 cases) versus cases with a mutated TP53 status
(TP53™4e! or TP53™Y"t genotype, overall accounting
for 26 cases), as defined by direct sequencing. As shown
in Figure 2A, CLL cases with an unmutated TP53 status
had a marked induction upon Nutlin-3 exposure for all the
three genes (0.0031 versus 0.0318, CDKNIA; 0.0155 versus
0.0641, BAX; 0.0047 versus 0.0274, PUMA; p < 0.001 for all
the comparisons). This also held true for CLL cases carry-
ing a 11q deletion, which were characterized by a marked
induction for all the three genes, not dissimilar from that
of CLL cases with a normal karyotype or carrying 13q
deletion or trisomy 12 (not shown). On the contrary, in
CLL cases with a mutated TP53 status, CDKNIA expres-
sion levels of Nutlin-3 treated and untreated samples
barely reached a significant difference (0.042 versus 0.0083,
p =0.043) and, in a similar manner, failed to reach a signifi-
cant difference for BAX and PUMA (0.0164 versus 0.0354,
p =0.103, BAX; 0.0033 versus 0.0049, p = 0.947, PUMA). In
keeping with previous reports [26], upon Nutlin-3 treat-
ment, CDKNIA expression levels showed the greatest
difference of increases between cases with an unmutated
and a mutated TP53 status (14.73 vs 2.42, p <0.0001) and
the greatest amplitude of induction in cases with an unmu-
tated TPS53 status when compared to induction of BAX
(5.93. versus 2.68, p = 0.0015) and PUMA (8.98 versus 3.80,
p =0.0021). Altogether, we chose to employ CDKNIA as
TP53 target gene in the context of an assay for the func-
tional evaluation of TP53 status (Figure 2B).

As shown in Figure 3, when the whole cohort of 100
cases was plotted according to the evaluation of
CDKNI1A expression level increases, all the 26 cases with
a TP53 mutated status (TP539€/™U or TPS3™UYWE (ages)
clustered in the left part of the graph by expressing
CDKNI1A levels below (23/26) or slightly above 5-fold
increase (3/26). Consistently, the great majority (57/63,
90.5%) of cases with a normal pattern in vitro had
CDKNIA values clearly above the 5-fold increase.
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Finally, as many as 10/12 cases with intermediate pattern
in vitro without evidence of TP53 derangement by FISH
and direct sequencing had a CDKNIA increase above
the 5-fold threshold.

Functional characterization of TP53 dysfunction in an
independent validation cohort

In order to validate the functional assay here proposed,
we analyzed a second independent cohort of 40 patients,
purposely enriched in CLL cases with a TP53 disrupted
status evaluated by FISH and direct sequencing, com-
posed by: i) 24 cases with TP53 mutation with conco-
mitant 17p deletion (TP53%"™, 12 cases) or without
concomitant 17p deletion (TP53™Y“', 12 cases); ii) 3
cases bearing a 17p deletion in absence of a concomitant
TP53 mutation (TP53%™Y); iii) 4 cases bearing a 11q
deletion in absence of concomitant 17p deletion and/or
TP53 mutation; iv) 9 cases without 7P53 mutation, 17p
deletion and/or 11q deletion (Additional file 1: Table S3).
As shown in Additional file 2: Figure S4, for each case of
this cohort, both western blotting for TP53 and qRT-PCR
for CDKNIA upon in vitro Nutlin-3 treatment of CLL
cells were performed. Results of these analyses on the
validation cohort were separately evaluated “in blind” by 5
independent data analyzers. The sensitivity of the pro-
posed functional assay resulted 0.9 (0.78-1, 95% Confi-
dence Interval, CI), whilst the specificity resulted 0.875
(0.713-1, 95% CI). In detail, for 35 out of 40 cases the 5
analyzers concordantly defined a TP53 status in keeping
with the TP53 genotype, as evaluated by FISH and direct
sequencing (Additional file 1: Table S4). Although appar-
ently not expressing TP53 mutations by direct sequencing,
two cases (e.g. V6, V16) were concordantly defined as with
a dysfunction by the 5 data analyzers. Nevertheless, given
the low CDKNIA increases found for these two cases
(Additional file 2: Figure S4B), the concordant readouts of
the 5 data analyzers could be considered in keeping with
the documented higher sensitivity of the functional test
compared with the TP53 direct sequencing. Finally, for 3
out of 40 cases (e.g. V29, V40, V42), the TP53 pathway
functionality was not correctly defined, although in 1 case
(e.g. V29) 2 out of 5 data analyzers attributed a functional
status consistent with the TP53 genotype (Additional file
1: Table S4).

Comparison with alternative TP53 functional assays

A series of 10 CLL cases composed by 4 11q deleted/
TP53""™ cases, 1 TP53%™" cases, 2 TP53™"™" and 3
TP53*"** cases was evaluated for the presence of ATM
alterations by performing alternative treatments with eto-
poside, etoposide plus Nutlin-3 or Nutlin-3, as previously
reported [21] (Additional file 1: Table S5). The alternative
treatments were set up on the 4 cell lines EHEB, MEC-1,
RAJL and HL60 (Additional file 2: Figure S5A). As shown
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Figure 2 Induction of the TP53 target genes CDKN1A, BAX and PUMA in CLL cases of the training cohort with a TP53 mutated status
(TP53Mut/del or TP53MUYWE ganotypes) or aTP53 wild type status evaluated by direct sequencing. A) Box-and-whisker plots show data
obtained by gRT-PCR evaluation of CDKNTA, BAX and PUMA expression levels in untreated or Nutlin-3 treated samples of CLL cases of the training
cohort with a mutated or with an unmutated TP53 status. The corresponding p value (Student’s t-test) is reported. B) Histograms represent
Nutlin-3 treated/untreated mean fold induction in TP53 wild type (white bar) and TP53 mutated (TP53Muvdel o Tpg3muYNt genotypes, grey bar)
CLL cases. Reported p values refer to Student's t-test. Error bars represent SD.

in Additional file 2: Figure S5B, with the only exclusion of
2 out of 4 11q deleted cases, no relevant differences were
detected in terms of type of response among experiments
with the alternative treatments.

The same series of 10 CLL cases was also employed to
perform a comparison between the approach by western
blot/qRT-PCR and an alternative approach by FACS
evaluating the modulation of TP53 and CDKNIA pro-
tein expression [26,33,34]. Again, FACS analysis was set

up on the series of 4 cell lines EHEB, MEC-1, RAJI, and
HL60. As shown in Additional file 2: Figure S6A, the
obtained patterns were consistent with those obtained
for the western blot/qRT-PCR approach and in keeping
with the cell line 7P53 genotype (Additional file 2:
Figure S6A). In the same manner, results of FACS
analysis for evaluation of TP53 and CDKNI1A protein
expression on the series of 10 CLL cases did not sig-
nificantly diverge from those obtained for the western
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Figure 3 Functional classification of CLL cases of the training cohort according to both western blot assay and evaluation of CDKNTA
induction by qRT-PCR. Histograms show data, obtained by gqRT-PCR amplification, of CDKNTA fold increase expression for each CLL case of the
training cohort classified according to western blot assay. Arrows indicate CLL cases with a TP53 gene mutated status as evaluated by direct

blot/qRT-PCR approach here proposed (Additional file 1:
Table S6 and Additional file 2: Figure S6B).

Discussion

Impaired TP53 function through mutation and/or
deletion is the most characterized factor associated with
chemoresistance in CLL [15]. Currently, FISH is a widely
used technique to detect chromosomal abnormalities
such 17p deletion in CLL but there is not a complete
overlap between 17p deletion and TP53 mutation, al-
though the deletion of one TP53 allele is frequently ac-
companied by mutation of the other allele. Direct
sequencing is considered the standard technique for the
detection of TP53 mutations, with a sensitivity of about
15%-20% of mutated DNA, but it is a time consuming
test, that does not take in account TP53 functionality. In
this context, a functional assessment of TP53 pathway
becomes of interest in high risk CLL patient, especially
in the subgroup that may escape FISH or mutational
analysis due to low 17p deleted/TP53 mutated clone
size. To address this issue in the last decade several
TP53 functional assays have been proposed (Additional
file 1: Table S7) [20-26,28,29,34].

By applying a training/validation strategy on a cohort
of 140 CLL, largely enriched for cases with a TP53 dis-
rupted status, we compared a TP53 functional assay,
based on the combined evaluation of TP53 protein
expression levels by western blotting and of CDKNIA

transcript expression levels by qRT-PCR, with the
canonical evaluation of TP53 mutational status by direct
sequencing. Cases identified as with a normal pattern by
western blot, and with high induction of CDKNIA
expression level, consistently presented an unmutated
TP53 status by direct sequencing, also irrespective of the
presence of a 17p deletion (see for example T13, T15, T51,
T71 in Additional file 2: Figure S2). Of note, this type of re-
sponse was also shared by all the cases of the training and
of the validation cohorts in which an 11q deletion was not
associated with a concomitant 7P53 disrupted status.
Cases identified as with a mutant pattern by western blot
and with low induction of CDKNIA expression level were
consistently 7P53 mutated by direct sequencing. Low
CDKNIA increases characterized cases with an intermedi-
ate pattern in which 7P53 mutations were detectable by
direct sequencing. On the contrary, cases with an inter-
mediate pattern and with high induction of CDKNIA ex-
pression level were consistently 7P53 unmutated by direct
sequencing. Since there is a tight correlation between the
size of the TP53 mutant clone and the impaired response
to evaluation of TP53 functionality, the latter could be
cases with a small TP53 disrupted clone size, that can be
unveiled by western blot analysis but not by qRT-PCR
where the lack of CDKNIA induction by the TP53 mutated
sub-clone is overcome by its up regulation occurring in the
normal TP53 component. Finally, cases with a normal pat-
tern by western blot but low CDKNIA increases (i.e. T20,
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T63, T85 in Additional file 2: Figure S2) could be charac-
terized by defects on DNA damage pathway other than
TP53 defects such as type C defects [23].

The assay here proposed, being based on the use of
Nutlin-3 as TP53 activator, is not specifically focused on
the detection of ATM mutation as they are other assays
based on the combinatorial use of etoposide plus
Nutlin-3 [21]. In our comparison series, in 2 out of 4
11q deleted cases, differences were detected in terms of
type of response between experiments carried out by ex-
posing CLL cells to Nutlin-3 and experiments performed
by utilizing the combinatorial strategy (Additional file 2:
Figure S5). In this context, a lack of the revelation of a
dysfunctional response in the case of for 11q deleted
cases could depend on the residual function of the
remaining allele [29,35], although ATM sequencing was
not performed in this study and, therefore, a loss of
heterozygosis was not specifically investigated in these
cases. This could be viewed as a limit of the proposed
western blot/qRT-PCR approach although, from a clin-
ical point of view, ATM defects, associated with a failure
of TP53 activation, are no longer to be considered a high
risk category [35]. These aspects could indicate different
mechanisms for TP53 activation between etoposide or
irradiation and alkylating agents or purine analogs [35].
Also in the light of the consideration mentioned above,
we chose to employ a relatively pure TP53 activator such
as Nutlin-3, given its non-genotoxic features that sim-
plify its handling.

Differently from the TP53 functional assay here pro-
posed, an approach by using FACS could be applied to
samples with low tumor load without a previous step of
purification of the neoplastic component [26,33,34]. On
the other hand, a downside of the FACS approach could
be the experimental variability due to the efficiency of
the permeabilization procedure and intra-cytoplasmic
staining of TP53 and CDKNI1A proteins. In fact, in the
comparison with western blotting, the FACS method-
ology showed lower signals, especially for the evaluation
of TP53 expression levels (Additional file 2: Figure S6).
Therefore, evaluation of TP53 expression levels by west-
ern blot seems in our hands a more powerful approach,
particularly useful in cases with low TP53 dysfunctional
sub-clones (Additional file 2: Figure S6). In addition, the
FACS approach does not allow to highlight TP53 frame-
shift mutations that are, instead, easily defined by west-
ern blot (Figure 1, Additional file 2: Figure S2, Figure S5
and Figure S6).

According to the above mentioned results, we propose
a diagnostic flowchart based on the investigation for 17p
deletion by FISH and the evaluation of TP53 pathway
functionality by the assay combining western blotting
for TP53 and qRT-PCR for CDKNIA upon a 24-hour
in-vitro incubation of CLL cells with the non-genotoxic
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TP53 activator Nutlin-3. As shown in Figure 4, the pro-
posed functional assay might be particularly useful in
CLL cases in which a significant amount of 17p deleted
nuclei are not detected by the conventional FISH ana-
lysis. In particular, the proposed functional assay is able
to identify cases with dysfunctional responses to TP53
activators when a mutant pattern (always associated with
a reduced up regulation of CDKNIA) or an intermediate
pattern by western blot is documented, or when a nor-
mal/intermediate western blot pattern is associated with
a reduced CDKNIA up regulation. In this context, the
higher sensitivity of western blot if compared with direct
sequencing might make the proposed assay of potential
utility as a tool for the detection of chemoresistant cases
bearing dysfunctional TP53 at a sub-clonal level. Clinic-
ally, the capability to detect TP53 dysfunctional sub-
clones with small cell size (i.e. <15-20% of leukemic cell
population) could be very important at diagnosis or at
early disease phases to anticipate disease aspects such as
chemorefractoriness and relapse, as well as to detect a
minimal residual clone (Additional file 1: Table S7).
However, further studies are needed to collect definitive
information on the clinical relevance of TP53 dysfunction,
as evaluated by the western blot/qRT-PCR assay in the
proposed diagnostic flowchart, in comparison with the
conventional and widely adopted combination of FISH
analysis and 7P53 direct sequencing [2-4,7,8,18-29].
Finally, it is noteworthy that the assay here proposed,
differently from the conventional FISH analysis/TP53
direct sequencing approach, by evaluating CDKNIA ex-
pression levels by qRT-PCR, could be of relevant utility to
define cases with a type C defect that has been associated
both with short progression free survival intervals and
with early relapse [35].

Conclusions

The functional assay here proposed has the advantage of
a relatively low cost, as compared to direct sequencing,
and might contribute: i) to define dysfunctional cases
that may escape FISH and 7TP53 mutational analysis by
direct sequencing due to low 17p deleted/TP53 mutated
clone size; ii) to define dysfunctional cases not exhibiting
17p deletion or TP53 mutations (e.g. dysfunctional cases
with a type C defect). The flowchart here proposed
could represent a valuable contribution to diagnostic
and prognostic criteria for CLL patients, especially for
those affected by a high risk disease form.

Methods

Patients and cell lines

This study was performed on a multi-institutional
cohort of 100 CLL utilized to set-up the flow chart for
TP53 status evaluation in CLL (training cohort), and a
second multi-institutional independent cohort of 40
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CLL, employed to validate the TP53 status flowchart
utilizing a “blind” approach (validation cohort), diag-
nosed according to the ITWCLL-NCI criteria [36]. All
patients were provided informed consent in accordance
with local Institution Review Board requirements and
the Declaration of Helsinki. The main clinical and
biological features of the two cohorts are summarized in
Additional file 1: Table S2 (training cohort) and in
Additional file 1: Table S3 (validation cohort). In this
context, in 123/140 cases the neoplastic component was
more than 80% of cells; in the remaining 17 cases the
in vitro experiments (see below) were performed upon B
cell purification by CD19" conjugated columns (Miltenyi
Biotec). Sequences of IGHV genes were performed as
previously reported, using the InMunoGeneTics (IMGT)
directory for the identification of IGHV-D-J rearran-
gements and a 2% cut off of for mutated/unmutated
discrimination [37]. Detection of CD38, CD49d and
ZAP70 expression was performed as previously reported
using the cut offs of 30% positive cells (CD38, CD49d ex-
pression) or 20% of positive cells (ZAP70 expression) [37].

EHEB, MEC-1, RAJI and HL-60 cell lines were ob-
tained from DSMZ (Germany); MAVER-1 cell line was
kindly provided by Alberto Zamo (Department of Path-
ology, University of Verona, Italy). The most relevant

molecular features of cell lines to address the study are
summarized in Additional file 1: Table S1.

Analysis of cytogenetic aberrations

Cytogenetic abnormalities were detected as previously
reported [37] by FISH for deletion on chromosomes 11,
13, and 17 using the 3 locus specific probes LSI-ATM
(SpectrumGreen), LSI-D13S319 (SpectrumOrange), and
LSI-p53 (SpectrumOrange), and for aneuploidy of chro-
mosome 12 using an alpha satellite DNA probe CEP12
(SpectrumGreen) (Vysis). In all cases, at least 200 inter-
phase cells with well delineated fluorescent spots were
examined. A cut-off of 5% of nuclei was applied to
discriminate between negative cases and cases bearing a
specific chromosomal abnormality [37]. In the case of 17p
deletion, all cases with deletion detectable in 5-10% of
nuclei were re-evaluated with a second different specific
LSI-p53 probe (Metasystems).

Analysis of TP53 mutations

In CLL cases and cell lines, mutation analysis of 7P53
exons 2 to 11 was done by DNA direct sequencing on an
ABI Prism 3130 automated DNA sequence analyzer
(Applied Biosystems) according to the IARC guidelines
(www.p53.arc.fr) and analyzed by Sequencing Analysis
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v5.2 software (Applied Biosystems) [7]. Mutations were
confirmed on both strands on independent amplimers
and validated by the IARC TP53 Mutation Database
R15 [31].

Cell culture conditions
Primary CLL were obtained from peripheral blood sam-
ples by Ficoll-Hypaque (Pharmacia) density gradient
centrifugation and cryopreserved until use. After thaw-
ing and upon evaluation of the percentage of CLL cells
by flow cytometry, CLL cells were further purified by
immunomagnetic negative selection as described [38].
Cell lines and CLL cells were cultured (1 x 107 cells/ml)
in RPMI-1640 (Biochrom) supplemented with 10% heat-
inactivated fetal bovine serum (Biochrom), 100 U/ml peni-
cillin, 0.1 mg/ml streptomycin and 2 mM L-glutamine
(Invitrogen) in the presence or not of 10 uM Nutlin-3
(Cayman Chemical) or 50 uM etoposide, or 50 M etopo-
side plus 10 pM Nutlin-3 for 24 hours (CLL cases)
[21,32], or up to 48 hours for cell lines in case of Nutlin-3
treatment, as previously reported [32]. Cell viability was
assayed by AnnexinV and 7-amino-actinomycin-D (7-
AAD, both from Becton-Dickinson) double staining
(AnnexinV/7-AAD assay) and data were acquired on a
FACSCanto flow cytometer and analyzed by Diva software
(Becton-Dickinson) as previously reported [38].

Western blot

Total proteins were extracted in RIPA lysis buffer
(Santa Cruz) from cultured cells, collected 24 hours
after Nutlin-3 treatment, quantified with Bradford
assay (Bio-Rad) and ran in 10% SDS-PAGE gels prior
to transfer to nitrocellulose membranes (GE Healt-
care) for immunoblot analysis and detection by ECL
(GE Healtcare) or Immobilon (Millipore Corporation).
1:1000 mouse-anti-TP53 (clone DOI, sc-126) was used
for protein detection (Santa Cruz). 1:100.000 mouse-anti-
[B-actin antibody (clone AC-74, Sigma-Aldrich) was used
as loading control.

TP53 and CDKN1A flow cytometry

Fixation and permeabilization of cells were performed
with Fix and Perm (Caltag) with methanol modification
according to producer guidelines. Cell staining was
performed using direct anti-p53(clone DO7)-FITC (sc-
47698, Santa Cruz) or indirect anti-p21 (clone Ab-1,
OP64, Calbiochem) with secondary antimouse IgG-FITC
(sc-2010, Santa Cruz) or anti-CD19-APC (clone HIB19,
555415, BD-Pharmingen) or specific isotype controls.
Data were acquired on a FACSCanto flow cytometer and
analyzed by Diva software (Becton-Dickinson) as previ-
ously reported [38].
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Gene expression profile experiments

Gene expression profile experiments (GEP) were per-
formed in a cohort of 20 CLL cases (Additional file 1:
Table S8). Total RNA was extracted from purified CLL
cells and normal peripheral blood B cells of healthy
donors using Trizol reagent (Invitrogen) and validated
for integrity and purity using the Agilent 2100 Bioanaly-
zer (Agilent Tecnologies). GEP was performed using the
whole-human genome (4x44K) oligo microarray plat-
form (Agilent Tecnologies) as previously described [39].
Microarray slides were analyzed as previously described
[39]. Bioinformatic analyses were performed using SAM
algorithm.

Quantitative real-time PCR (qRT-PCR)

Expression of specific genes of interest (i.e. CDKNIA,
BAX, PUMA and B2M) was evaluated with the TagMan
Gene Expression assay kit (Applied Biosystem, Life
Tecnologies); the relative amount of each gene was
calculated utilizing the expression of B2M as internal con-
trol using the equation 272C where ACt = (Ctgene-Ctaon)-
Fold changes between classes were calculated as reported
[39]. All qRT-PCR experiments were performed on an
Applied Biosystem 7700 Sequence Detection System (Ap-
plied Biosystem).

Statistical analysis

Data were compared using Student’s ¢-test for independ-
ent or paired samples. All statistical analyses were per-
formed using the MedCalc software (MedCalc Software).

Additional files

Additional file 1: Additional tables: Table S1. TP53 mutational status of
the cell lines employed in the study. Table S2. Characterization of CLL cases
of the training cohort. Table S3. Characterization of CLL cases of the
validation cohort. Table S4. Validation cohort: evaluation “in blind” of 5
independent data analyzers. Table S5. Characterization of CLL cases used
for comparison experiments. Table S6. Median fluorescence intensity
values for TP53 and CDKN1A protein expression by FACS analysis.

Table S7. Overview of the peculiar features of the different TP53 functional
assays described by literature. Table S8. Characterization of CLL cases used
for microarray experiments.

Additional file 2: Additional figures: Figure S1. Evaluation of
apoptosis levels by Annexin V-7AAD and sensitivity of western blot ana-
lysis upon Nutlin-3 treatment. Figure S2. Western blot for CLL cases of
the training cohort. Figure S3. Lack of the gene expression signature
associated with Nutlin-3 treatment in TP539€/™ " CLL samples. Figure S4.
Western blot/qRT PCR assay for CLL cases of the validation cohort.
Figure S5. Comparison with alternative TP53 functional assays using
combinatorial strategies with etoposide. Figure S6. Comparison with
evaluation of TP53 and CDKN1A protein expression levels by FACS
analysis.
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